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ABSTRACT 

Wearable biosensors and artificial intelligence (AI) are radically improving 

healthcare by facilitating continuous, non-intrusive, real-time monitoring of 

physiological and biochemical signals. Wearable biosensors are small, personal 
devices that can be worn on the body and gather metrics including heart rate, body 

temperature, blood glucose, and respiratory rate. Wearable biosensors lay the 

foundation for proactive, personalized healthcare. Chronic disease rates are on the 

rise, populations are aging across the globe, and there is need for smart systems 

that support remote care. Smart monitoring systems that utilize biosensors are 

being adopted for these reasons, especially AI-based monitoring. 

AI allows for data generated by biosensors to be processed, and used reliably. 

Machine learning and deep learning models are particularly useful in processing 

biosensor data. Example machine learning algorithms include convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs). Deep learning 

methods are able to remove background noise, feature extraction, data 
interpretation, and anomaly detection, along with retrospective analysis to predict 

health events including arrhythmia, stress episodes, hypoglycemia. AI and ML 

algorithms can use biosensor data for on-time feedback and decision support to 

clinicians with high amounts of specificity and sensitivity and low connectivity 

latency. Using Internet of Medical Things (IoMT) based infrastructure, wearable 

biosensors can securely transmit data privately to discrete clinical or edge cloud 

providers, to facilitate either clinician oversight of patients in real-time as they do 

their monitoring, or clinicians being forewarned to support early intervention 

when monitoring for acute patient events. 

While these systems can be considered game-changing advancements which 

include many advantages, there still exists hurdles to adopting systems to improve 
healthcare. 

There must be work done to address issues with data privacy, algorithmic biases, 

device interoperability, and sensor accuracy. Compliance with some privacy laws, 

such as HIPAA and GDPR is needed and the use of ethical and transparent AI 

models is necessary. Technical issues that must be addressed more generally 

include motion-induced signal noise, battery lifespan, and hardware-software 

integration. 

In conclusion, wearable biosensors empowered by AI may represent a new 

frontier in personalized, real-time health monitoring that enables early recognition 

of health issues, remote supervision, and chronic disease monitoring while 

alleviating the need for traditional healthcare capacity. To realize the full potential 

of this functionality, subsequent research should strive to improve data security, 
model transparency, and system scalability, and to keep patients as the focus of 

innovation. 
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INTRODUCTION 

Evolution of Healthcare Monitoring 

Over the past decade, healthcare has experienced a great change from traditional, reactive treatment models to 

proactive, patient-centered ones because of technological innovation. Central to this transformation is the emergence 

of wearable biosensors small, non-invasive devices that can do continuously tracking physiological parameters like 
heart rate, blood pressure, oxygen saturation, glucose levels, and body temperature. These wearable devices are 

changing health monitoring by providing real-time data and empowering individuals to take an active role in 

managing their well-being. 

The increasing demand for remote patient care, aging populations, and chronic disease management specifically in 

post-pandemic has accelerated the development of biosensor-based monitoring systems. Yet, the true power of these 

devices is only realized when combined with the power of artificial intelligence (AI). By combining biosensors with 

AI algorithms, it becomes possible to interpret huge streams of physiological data in real time, detect anomalies, and 

deliver actionable health insights. 

Role of Artificial Intelligence in Biosensor Data Analysis 

AI plays an important role in changing raw biosensor data into meaningful health information. Machine learning 

algorithms, like decision trees, support vector machines (SVM), and deep learning models such as convolutional 

neural networks (CNNs), are trained to understand patterns and anomalies in physiological signals. These systems 
can find early indicators of conditions like arrhythmias, hypoglycemia, hypertension, and respiratory irregularities—

even when symptoms are not clinically apparent. 

For example, a wearable ECG patch combined with a CNN can indicate atrial fibrillation in real-time, and a 

glucose-monitoring biosensor combined with predictive AI can warn diabetic patients of impending hyperglycemia. 

These intelligent capabilities not only improve patient outcomes but also decrease the burden on healthcare 

infrastructure by decreasing hospital visits and allowing remote care. 

Convergence of Biosensing, Connectivity, and AI 

The success of real-time health monitoring relies on the seamless integration of biosensing hardware, wireless 

connectivity, cloud computing, and intelligent software. Wearable biosensors act as data collectors, transmitting 

signals through Bluetooth or Wi-Fi to mobile or cloud platforms, where AI engines analyze the inputs. Based on the 

analysis, users receive alerts or recommendations via mobile applications or web dashboards. 
This ecosystem of interconnected technologies is collectively known as the Internet of Medical Things (IoMT). It 

forms the foundation of smart healthcare systems that support personalized, continuous, and location-independent 

care. Table 1 summarizes the technological components of AI-driven wearable health monitoring systems. 

Table 1: Components of an AI-Powered Wearable Health Monitoring System 

Component Function 

Wearable Biosensor Captures physiological signals (e.g., ECG, SpO₂, glucose) 

Wireless Connectivity Transmits data to local or cloud systems 

AI Engine Analyzes data and detects abnormal patterns 

Mobile App Interface Displays real-time health insights to users 

Notification System Sends alerts and recommendations based on AI analysis 

Importance of Real-Time Monitoring 

Timely detection and response are critical in managing acute health conditions such as heart attacks, strokes, and 

severe allergic reactions. Real-time monitoring allows healthcare providers and patients to act within a crucial 

window of intervention. It also supports long-term disease management by tracking physiological trends and 
offering tailored health recommendations. 

Moreover, real-time biosensor systems facilitate early warning mechanisms for high-risk individuals and enable 

post-operative monitoring without the need for prolonged hospitalization. In areas with limited access to medical 

facilities, these technologies can bridge critical gaps by offering continuous surveillance and telehealth integration. 

Research Motivation and Objectives 

Despite the growing body of literature on wearable technologies and AI, there is a need to consolidate these 

developments into a cohesive, functional framework that can be tested and scaled in real-world environments. This 

research aims to design, simulate, and evaluate a wearable biosensor system enhanced with AI to enable real-time 

health monitoring. 

The objectives of this study are: 

 To analyze the integration of biosensors with AI algorithms for accurate health data interpretation. 

 To evaluate the performance of AI models in identifying physiological anomalies. 
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 To address the ethical and practical challenges of deploying such systems in real-life scenarios. 

By focusing on both the technical and human-centric aspects of the system, this study contributes to the growing 

discourse on digital health transformation and proposes a scalable model for future healthcare ecosystems. 

 

REVIEW OF LITERATURE 
History of Wearable Biosensors 

There has been a rapid evolution of wearable biosensors including basic pedometers and heart rate monitors to 

biochemical and electrophysiological sensing devices. Earlier devices primarily monitored physical activity, but 

now, wearable biosensors can monitor complex health indicators such as blood glucose, oxygen saturation (SpO₂), 

cortisol, and ECG. According to Heikenfeld et al. (2018), with the advances in microfluidics, flexible electronics, 

and skin adhesive materials, continuous and non-invasive health monitoring is truly possible and verifiable for 

clinical uses. 

Integration has recently been applied to wearable format by introducing multiple sensors into a single platform. 

Smartwatches, for instance, incorporate not only heart rate photoplethysmography (PPG) sensors but also 

accelerometers and skin temperature sensors to produce a richer health profile. A deeper insight into hydration and 

metabolic state would involve sweat-based biosensors for glucose and electrolyte testing, as described by Gao et al. 

(2016), and would have the added benefit of being non-invasive. 

AI as an Advanced Data Processor 

Artificial intelligence has become a valuable solution for filtering, analyzing, and interpreting complex biosensor 

signals in wearable health systems. Machine learning algorithms such as support vector machine (SVM) classifiers, 

decision tree classifiers, and deep learning models including convolutional neural networks (CNNs) are popular 

methods for identifying abnormal or irregular patterns of activity from arrays of wearable ECG, respiratory, or 

glucose data streams. For example, Sharma et al. (2020) saw deep learning models show as high as 94% accuracy in 

arrhythmia based on wearable device ECG signals.  

AI models are also able to adapt to baseline data from individual users so that false positives are reduced while 

maximizing precision in personal health monitoring. A promising future opportunity lies with researchers 

developing reinforcement learning techniques for on-demand dynamic insulin dosing based on the real-time glucose 

monitor's data to produce adjustment recommendations without a physician maintaining oversight or track of dosing 
practice. 

Integration with Internet of Medical Things (IoMT) 

The Internet of Medical Things (IoMT) technologies are the foundation of wearable-AI integration because they 

facilitate real-time data transmission, remote patient monitoring, and cloud analytics. Xu et al. (2021) explain how 

IoMT frameworks connect wearable devices with smartphones, cloud databases, and clinical dashboards to create an 

environment that supports continuous care and facilitates data-driven decision-making. Edge computing also 

provides real-time execution with lower latency for the data, which is useful for emergency detection 

implementations such as seizure prediction or fall detection in elderly patients. Edge-AI frameworks help alleviate 

battery and bandwidth constraints by only running the important health alerts locally. What are some challenges 

mentioned in the literature? 

While there has been substantial progress, researchers have also noted the limitations of existing wearable-AI 
frameworks. The challenges that should be highlighted include: 

• Sensor Drift and Signal Noise: Sensor readings can be affected by movement or the amount of sweat, and also 

outside sources such as temperature, humidity and rain. 

• Data Privacy: Biometric information about individuals is sensitive information and need to adhere to data privacy 

standards including HIPAA and the new EU General Data Protection Regulation (GDPR). 

• Interoperability: Device manufacturers utilize different velocity ranges and proprietary data formats, 

communication protocols, and even have communication APIs. 

• Ethical use of AI: The algorithmic bias and explainability of an AI can cause a reluctance to clinical usability 

anyway.  

Figure 1 summarizes the key findings from recent studies:  

Study Focus Area Key Findings 

Heikenfeld et al. 

(2018) 
Biochemical biosensors 

Sensing sweat allows diagnostic testing to be non-

invasive 

Sharma et al. (2020) Deep learning with ECG sensors CNNs achieved >94% accuracy in detecting arrhythmia 

Xu et al. (2021) IoMT integration and remote care 
The IoMT enables real-time health systems with scalable 

potential  
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Study Focus Area Key Findings 

Gao et al. (2016) 
Flexible wearables for glucose 

sensing 
Continuous glucose monitoring via sweat analysis 

Topol (2019) Future of AI in healthcare AI-human partnership leads to improved healthcare 

 

The literature reviewed shows clear promise for wearable biosensors and AI working together for healthcare 

decision-making. These systems are moving from a simple way to track your health, toward using biosensors as a 

robust diagnostic and predictive system. Although there are ongoing technological, regulatory, and ethical issues, 

the research is a step in the right direction to develop, evaluate, and improve reliability, accuracy, and user trust to 

assist with intelligent wearable health monitoring systems. 

 

RESEARCH METHODOLOGY 

In this research, a mixed-methods approach is used to consider the integration of wearable biosensors and artificial 

intelligence (AI) in health real-time tracking. The research methodology includes literature-based conceptual 
frameworks, simulation modeling, machine learning, and evaluation of ethical design. The objective is to assess 

technology feasibility, data processing, and real-world implementation for AI wearable biosensor systems. 

This methodology explores five critical phases, which each phase covers different technical, analytical, and ethical 

perspectives. 

System Architecture Development 

An architectural design is proposed to represent a real-time wearable health monitoring system's shape and function. 

The architectural design represents a series of modules that are interrelated and provide unbroken data streaming 

from biosensors to an AI processor and then to the user or clinician. The proposed system integrates real-time alarm 

processing, predictive alerts, 

Key Components and Functions 

Component Function 

Wearable Biosensor Measures real-time physiological signals (e.g., ECG, glucose) 

Mobile App Interface Interfaces with the sensor and displays user health status 

AI Engine Processes incoming data using machine learning for anomaly detection 

Cloud Server (Optional) Synchronizes user history and allows remote access for clinicians 

Notification System Sends push alerts for anomalies or emergency health conditions 

The biosensor modules are expected to be compact, non-intrusive, and fitted for continuous wear. Once the 

biosensors gather data, it is forwarded via Bluetooth Low Energy (BLE) to a mobile device, where it can ostensibly 

be processed in real-time, or sent to the cloud Eightan/some cloud location for further analysis. This architecture was 

also flexible enough to accommodate integration of edge computing, for the speed of decision-making to happen, 

while reducing latency.  

Data Acquisition & Simulation 

Rather than installing physical hardware at-scale, this research employed simulation-based modeling using real life 

physiological datasets to replicate the data flow of a biosensor, in real-time. The two principal datasets used were:  

  • MIT-BIH Arrhythmia Database for ECG signals 

  • UCI Machine Learning Repository for temperature, resp-rate, and glucose levels. 

Data Types and Sources Used 

Parameter Source Sampling Rate / Format 

ECG Signals MIT-BIH Dataset 360 Hz, labeled events 

Heart Rate & Respiration UCI Wearable Dataset Per-second readings 

Glucose Levels Synthetic + Public Diabetic Logs 5-minute intervals (timestamped) 

The extensive task of prepping data required a system of: 

- Signal normalization to ensure signal values had a common range. 

- Noise rejection with various moving averages and wavelet transforms. 

- Segmentation for supervised learning, allowing the use of fixed-length time windows. 

Data clarity was markedly improved by removing artifacts originating from either movement or skin resistance 

artifacts, and implementing adaptive thresholding methodologies before the data was input into the models. 

AI Model Design and Development 
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In order to classify physiological states and discover abnormalities, three machine learning models were designed 

and implemented: 

- Convolutional Neural Networks (CNN) were appropriate for analyzing time-dependent ECG signals and 

discovering arrhythmias (or other irregular pulse patterns). 

- Support Vector Machines (SVM) are appropriate for binary classification tasks such as stress / no-stress and 
detection of fever. 

- Random Forest Classifier was appropriate for combining multiple biosignals (e.g. heart rate, temperature, skin 

conductance, etc.) to classify health states with multiple parameters. 

Process of Model Training 

The models were trained using 70% of the dataset and evaluated on the remaining 30%, using k-fold cross-

validation (k=5) to minimize overfitting and better assess generalization of the models. Also, training was provided 

using Python-based tools (TensorFlow and Scikit-learn) and GPU acceleration where available. 

Model evaluation also went through a hyper-parameter exploration such as: 

- Learning rate 

- Kernel (for the SVM) 

- Tuning depth (for the Random forest) 

- Tuning layers (for the CNN) 
Each model was evaluated with common metric. 

Evaluation Metrics and Simulation Results 

To determine the effectiveness and feasibility of the AI-enhanced wearable system, the following evaluation metrics 

were used: 

Metric Purpose 

Accuracy (%) Measures correct classification of physiological events 

Precision & Recall Assesses false positives and false negatives 

F1-Score Harmonic mean of precision and recall 

Latency (seconds) Time lag between data acquisition and actionable output 

Power Efficiency Measures device energy consumption (in mAh/hour) 

Model Performance Summary 

Model Accuracy Latency F1-Score Power Usage (mAh/hr) 

CNN 94.7% 1.8 s 94.3% 0.21 

SVM 89.8% 2.3 s 87.1% 0.26 

Random Forest 91.2% 2.6 s 90.5% 0.24 

The CNN model was the most reliable and resource-efficient of the three, which allows for its deployment on 

mobile-based or edge devices. Performance metrics were obtained by simulating how the models would perform on 
near-realistic platforms such as Raspberry Pi 4 and Android SDK emulators.  

Ethics and Privacy Considerations  

In health monitoring applications, privacy, consent, and data governance are of paramount importance. This work 

incorporated mechanisms to mimic ethical safeguards to act as a responsible deployer.  

Examples of ethical safeguards incorporated into this framework included:  

• HIPAA and GDPR compliant as the simulation framework operated against common anonymization, data 

retention, and consent logging standards.  

• Encrypted data streams, all data streamed within the simulation with encryption using AES-256 protocols to model 

secure data transmission.  

• User-managed access as users could determine roles for whom had access to which health parameter, modeled 

through role-based access control (RBAC).  
• Audit logging to instantiate accountability, including simulated logs of data transfer activities, alerting the user at 

point of continuous access, and third task accesses to data.  

Determining ethical design principles were applied not just with data storage but also in model outputs to highlight 

impacts of explainability and mitigate bias. 

Summary of Methodology Contributions 

Aspect Contribution 

System Design Proposed modular, scalable health monitoring system architecture 
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Aspect Contribution 

AI Modeling Applied and benchmarked CNN, SVM, and Random Forest for biosignals 

Simulation & Metrics Realistic evaluation of model speed, accuracy, and efficiency 

Ethical Framework Data security and user consent protocols integrated 

Practical Feasibility Simulated mobile/edge deployment validated performance objectives 

This comprehensive process offers a roadmap to create real-world AI-assisted wearable health systems. It is a 

discussion that incorporates technical rigor, ethical accountability, and operational deployability, making it pertinent 

to academic institutions, clinics, and health technology companies. 

 

RESULT & DISCUSSION 

Performance of AI Models on Biosensor Data 

In this study, the three machine learning models—Convolutional Neural Networks (CNN), the Support Vector 

Machines (SVM), and Random Forest Classifiers—were used together and these models were applied for evaluation 

on the biosensor data, which encouraged focus on ECG -based detection in arrhythmia, heart rate variability, and 
predicting level of stress. A synthetic dataset produced by overlapping the, MIT-BIH Arrhythmia ICU database and 

UCI wearable health repository, was  used to reproduce both simultaneously, simulated biosensor signals. After pre-

processing and feature extraction a 70-30 partition was made to train and test each model for performance. 

The model CNN provided the best performance in accuracy, recall, and latency, ideal for real-time applications 

running in wearable application. Random Forest and the SVM models also performed reasonably well, stroking a 

balance of precision and latency. 

Metric CNN SVM Random Forest 

Accuracy (%) 94.6 89.8 91.2 

Precision (%) 93.1 88.4 90.0 

Recall (%) 95.7 85.9 91.0 

Latency (sec) 1.8 2.3 2.6 

F1-Score 94.3 87.1 90.5 

These results align with previous studies (e.g., Sharma et al., 2020) that indicated the CNN's strong ability to 

analyze physiological time-series data. 

Usability and Efficiency in a Simulated Wearable Environment 

We constructed a simple simulation of a wearable health monitoring environment with Raspberry Pi and Android 

SDK to assess the feasibility of AI models running on edge devices. We optimized the CNN models using 

TensorFlow Lite and tested each model for power use, responsiveness, and CPU. 

The results demonstrated that optimized models could accommodate streaming biosensor data at less than 5% CPU 

use and power consumption of less than 0.3 mAh/hour, which is manageable from the capacity of contemporary 

smartwatches or fitness bands. This suggests that AI-powered biosensors can be placed on low-power hardware 

platforms to be used over time without substantially draining the battery or needing real-time cloud connectivity. 

Given our mobile interface, we were able to deliver real-time feedback by sending alert notifications to users for 

critical events such as irregular heart rhythms or elevated stress. 

Real-Time Application and Responsiveness 

The simulated system was tested for responsiveness in light of attacks.  
Aside from real-time applications, we were able to use datasets from the aggregated biosensor readings generated 

daily health summaries with actionable insights for patients and health professionals. Summary measures in samples 

such as average heart rate, number of steps, etc. 

Discussion of Challenges and Limitations 

While the results are encouraging, there are a number of challenges. First, motion artifacts, as well as environmental 

factors (such as temperature or humidity) can interfere with biosensor readings. Second, users will require retraining 

for AI models, which can occur over time due to changes in user physiology or lifestyle. In addition, there are 

privacy concerns; while the simulation utilized an encrypted transmission protocol for HIPAA or GDPR 

compliance, real-world implementations may require full adherence to these regulations. 

There are also ethical considerations around the over-monitoring of healthcare or biases in algorithms. For example, 

a model may misclassify a regular variation as a health incident (e.g., set a false alarm). Excessive false alarms could 
lead to unnecessary distress among patients. However, a monitoring system can also miss a legitimate detection, 
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which could result in serious health outcomes. Model validation across diverse populations and transparency of the 

decision-making logic are important before the system can be deployed clinically. 

The results validated wearable biosensors merged with AI technology can generate accurate, low latency, energy-

efficient, and real-time monitoring of health metrics over time. CNN models performed overall the best; 

additionally, the prototype system could demonstrate the feasibility of real-world time activity use on edge devices. 
However, data noise, personalization, and ethical AI will be challenges that need to be addressed to ensure the 

reliability of these systems, user trust, and clinical readiness. 

 

CONCLUSION 

Merging Wearables and Intelligence: A Groundbreaking Move in Health Care 

The coming together of wearable biosensors and artificial intelligence (AI) has created a transformational change in 

how health care is delivered, experienced, and improved. This combination allows for continuous, real-time health 

monitoring, enabling individuals and clinicians to identify, prevent, and manage medical conditions more effectively 

than episodic models of care. The studies confirm that when physiological data from biosensors are processed with 

intelligent algorithms, the results are personalized and actionable insights. 

AI models such as Convolutional Neural Networks (CNNs), Support Vector Machines (SVMs), and Random 

Forests display high level of accuracy interpreting biosensor data, especially with conditions influenced by time 
such as arrhythmia or sugar spikes. AI achieves this by minimizing decision latency and reducing false positive and 

negative results, which are common in traditional health alert systems. Not only this, but AI algorithms can utilize 

the trends and events associated with the individual's unique health, allowing for adaptive and personalized health 

interventions. 

Key Findings Deriving from the Research 

There were a number of practical and theoretical outcomes from this research, as summarized in the table below: 

Outcome Category Key Findings 

Model Performance CNN achieved 94.6% accuracy; suitable for ECG and heart rate monitoring 

Energy Efficiency Models could run on mobile/edge devices using <0.3 mAh/hour 

Real-Time Responsiveness Alerts were triggered in under 2 seconds in simulated emergencies 

Ethical & Privacy 

Concerns 

Importance of data encryption, user consent, and GDPR/HIPAA compliance 

emphasized 

Usability Compatible with low-cost hardware; accessible to users with basic mobile devices 

Collectively, these outcomes lend credence to the prospective feasibility of deploying AI-integrated wearables in 
both clinical and non-clinical practices, including homes, gyms, elderly care centers, and remote or underserved 

communities.  

Implications for Future Health Care Systems 

Wearable biosensor systems enhanced with AI represent a paradigm shift from reactive healthcare (where care is 

provided after symptoms develop) to proactive and preventive healthcare. The ability to capture continuous data 

enables anomaly detection early on and avoids issues before they escalate. This also potentially results in improved 

patient outcomes, and decreases the demand on the healthcare infrastructure by limiting unnecessary visits to 

hospital emergency services (for acute events) and readmissions. 

The wearable-AI advantage lives in the patient-centred component, the convenience of wearable-AI, enhanced by 

data visual precursors and alerts that encourages participation and self-care, with the primary focus recommended 

for chronic diseases including diabetes, cardiovascular issues, and hypertension. 

There is with the wearable-AI systems some limitations to explore: 

• Sensor accuracy is often challenged in an open environment, particularly active environments (due to user 

movement and perspiration)  

• Algorithms are evaluated descriptively, with little effort to produce transparency that explains potential 

black-box decision-making when health is at stake 

• Scalability; differing populations with similar health conditions may report unique responses due to skin 

tone and physiological differences 

• Affordability; lower-income communities and healthcare systems in developing economies 

In order to develop new models around wearable-AI, we will need a cooperative delivery model where expertise can 

be shared through collaboration and innovation in regulation, scientific practices, and deployment. 

Conclusion 
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In conclusion, the research provides evidence that wearable biosensors coupled with AI are not simply 

advancements in hardware, but rather our future healthcare model. This technology has the opportunity to close the 

gap between early detection and timely treatment, especially when monitoring high-risk or isolated populations. The 

information offered by sensor technology and increasingly explainable and ethical AI models will make the 

evaluation of wearable health monitoring systems scalable and sustainable. 
Future steps should include clinical trials, generalization of algorithms in various demographic groups, and a deeper 

connection to electronic health records (EHRs) to truly embrace and achieve personalized, data-informed, and 

universally accessible healthcare. 
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