

ACADEMIA Tech Frontiers Journal

AI-Powered Chatbots in Education: Evaluating Their Effectiveness in Student Engagement and Learning Outcomes

Saqib Khan^a, Mehwish Javed^b

- ^a PhD Scholar, Department of Computer Science, Balochistan University of IT, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan <u>saqibkhan@gmail.com</u>
- ^b Senior Lecturer, School of Computing and Information Systems, Sindh Institute of Technology, Karachi, Pakistan

Article Info:

Received: February 14, 2025 Revised: March 2, 2025 Accepted: March 16, 2025

Corresponding Author: Saqib Khan

ABSTRACT

Artificial Intelligence (AI) is having an ever-greater influence on a multitude of domains, including education through chatbots. Chatbots are AI-powered systems that facilitate communication, deliver real-time support, and promote personalized learning experiences. Chatbots have sparked great interest in educational domains due to their potential to increase student engagement and improve educational outcomes. This abstract examines the role of AI-powered chatbots on academic motivation, interactivity, and overall academic performance of students in educational domains. By reviewing recent research, surveys, and experimental data, the abstract discusses how chatbots contribute to a more engaging and interactive learning environment. AI powered chatbots can provide immediate feedback, clarify complex concepts and offer personalized support for students with various learning needs, which can contribute to increased confidence and involvement. Furthermore, chatbots are accessible 24/7, and can address a time-space gap involving teacher availability, especially in remote learning contexts. However, the effectiveness of chatbots is varied, depending on aspects of the AI design, content relevance, and the digital literacy of students. They currently also possess limitations, such as lack of emotional intelligence, and ability to acknowledge nuances in questions. Nevertheless, the potential of AI powered chatbots in supporting traditional educational approaches appears strong. Their escalating presence represents a shift toward more technology-integrated pedagogy and is an area of interest in educational research and innovation.

Keywords:

AI-powered chatbots, Educational technology, Student engagement, Personalized learning, Academic performance, Digital pedagogy

INTRODUCTION

The rapid advancement of Artificial Intelligence (AI) has revolutionized a number of industries and systems; education is perhaps the most affected of these. In education, AI-powered chatbots, which are typified as conversational agents or chatterbots, are being implemented as vehicles for communication, for personal support, and for student engagement experiences. These chatbots are designed to carry on a human-like conversation, and they provide students with immediate feedback, assistance, and an engaging learning experience that other traditional methods sometimes lack. As educational institutions work on innovative ways to enhance learning experiences, examining these tools becomes extremely important to find out if they provide any legitimate benefits to student learning.

Understanding AI-Powered Chatbots in Education

AI-powered chatbots are software programs that engage users in conversation via Natural Language Processing (NLP) and other tools using machine learning and artificial intelligence. Within education these chatbots are often built into Learning Management Systems (LMS) but may also be embedded in mobile apps, or websites to help

students answer frequently asked questions, schedule appointments, tutor students, or review content for their courses. These chatbots can customize their output based on the learner input to personalize the interactivity of the chatbots' responses.

Their applications vary from simple functionality such as reminders, to more complex support mechanisms, such as intelligent tutoring systems. Following improvements in AI algorithms, these bots are capable of tracking a learner's progress, providing resource suggestions, and even identifying patterns within performance that may indicate the need for intervention or further support.

Relevance within Modern Education

The recent global shift in educational frameworks to blended or online learning systems, driven in part by the COVID-19 pandemic, has led to a dramatically increasing need for scalable, accessible, and responsive learning resources. The availability of 24/7 human-like assistance without the requirement for immediate human engagement aligns with these demands by utilizing AI-branded chatbots. The use of AI-brand chatbots, instead of traditional human mentors, also enables teachers to better manage large classrooms by having chatbots respond to repetitive rote questions, while teachers (1) focus on other more complicated human matters, or (2) direct those concerns to their chatbot assistant.

The emphasis on student-centered learning in modern educational frameworks also suggests that chatbots allow the opportunity to transform the experience of education. The ability to respond to individual learning styles, preferences, and pace encourages student autonomy, while simultaneously holding educational value by fostering motivation. These affordances to personalize learning and motivation are often challenging to maintain in higher and distance education settings due to difficulties in sustaining learner engagement.

Possible Impact on Student Engagement

One of the most important reasons to use AI chatbots within the education sector is their potential benefit in student engagement. AI chatbots can educate students in a conversational way, allowing for a two-way system of communication. This leads to increased student dialogue, which should support active learning. AI chatbots are dynamic and interactive; they maintain student engagement during learning activities. They allow students to ask questions, and contribute to discussions just like in traditional learning institutions, but in a way that can allow them to remain anonymous. The quality of engagement can also increase through increased gamification and interactive elements into the interface of the chatbots, turning mundane learning tasks into more enjoyable activities, with the objective of encouraging deeper cognitive engagement. Based on their ability to respond, AI chatbots provide students, particularly those who are shy or reluctant to engage in person, a place to safely ask questions and investigate topics without fear of judgment.

Influence on Learning Outcomes

While the increased engagement provides a critical measure of success, what could be deemed disappointing is if there is no means of translating engagement into identified or marked success in learning outcomes. Learning outcomes are defined as measurable or observable changes/developments in knowledge, skills, attitudes, or behavior resulting from educational activities. A considerable body of evidence shows how AI chatbots in education could enhance learning outcomes by providing individualized feedback, offering focused and personalized practice or practice activities, and delivering learning content based on the individual learning content they are ready for.

Chatbots may also facilitate the awareness of developing metacognitive abilities by prompting students to reflect on their learning processes. Chatbots initiate metacognitive awareness by asking leading questions and offering suggestions. By guiding a student in an exploration of their strengths and weaknesses, chatbots will help the student become aware of the self-regulatory piece accommodating a substantial portion of academic success and long-term learning habits.

The following table identifies how AI chatbots relate to important aspects of effective learning:

Learning	Component	AI Chatbot Functionality

Immediate Feedback Delivers on-the-spot responses/correctly correcting mistakes

Personalization Customizes content and difficulty based on learner performance

Student Engagement Models conversational exchange and gamified learning opportunities

Accessibility Available to the learner, 24/7, on multiple platforms

Motivation and Support

Offers engagement with tips, encouragement, highlights the progress of the learner

with positive reinforcement and check-ins

Limitations and Challenges

Despite their potential, AI-based chatbots carry some qualities of limitations. They do not have the capability to understand complex, contextual based, and emotional queries. While machine learning is progressing daily to provide functionality and improvement, they presently struggle with ambiguity, sarcasm, and culture. In addition,

too much reliance on chatbots may hinder a student's engagement with instructors as humans, causing students to miss out on opportunities for mentorship and critical thinking.

There is also a concern about data privacy and security. Chatbots will collect vast amounts of student data to personalize learning, and it is imperative to find a way to be secure and safe with that data. Schools also need to ensure they are following the rules and regulations when it comes to student protection and the use of student data and ensuring students understand how their data is being used by the school and their chatbots.

Lastly, there is the digital divide. This problem will also take away the equity that comes from using the chatbot. For students without access to the internet, students not understanding how to navigate using digital literacy, or students without reliable internet, they will not equally benefit from this type of technology and innovation, and those students may not receive an equitable education to the other peers in the course.

Need for Evidence-Based and Evaluative Implementation

The implementation of chatbots is now underway and growing in scale and type in use. It is important to carry out rigorous evaluation of the trademark effectiveness of the chatbot through research and longitudinal studies. While evaluation can focus on looking for engagement data like number of times used or student satisfaction, evaluation should also look towards evaluating improvement of student learning outcomes.

Comparative studies with control groups, student feedback surveys, and learning analytics can further inform an assessment of the real-world implications of these tools.

Educational institutions also must assess the relevant contextual and situational elements when exploring the integration of AI chatbots; including curriculum alignment, technological infrastructure, and staff professional development considerations. Without proper integration to consider the learning ecosystem, student engagement and success may unrealized.

AI chatbots represent a new frontier of educational technology, which has the potential to provide new opportunities to enhance student engagement, and support learning outcomes. The opportunities presented by chatbots are consistent with both the needs for personalization and responsiveness, and the current expectations of learners in an increasingly scalable educational world. However, in order to effectively integrate and operationalize chatbots and their application in education, we must understand the capacity, limitations, and appropriate contexts in which these technologies can be used. As teaching and learning contexts continue to change, responsive research, development, and iteration will provide opportunities to explore the integration, and use of AI chatbots as a tool to further meaningful educational progress.

LITERATURE REVIEW

The emergence of artificial intelligence in educational contexts has resulted in an explosion of scholarly interest, particularly when examining the use of AI-powered chatbots. Researchers have examined their potential to enhance learner engagement and academic support, and achievement. This literature review represents a thorough examination of literature addressing the many areas relative to chatbot effectiveness in education, and importantly, student engagement.

Theoretical Foundations of Chatbot Usage in Education

AI chatbots can draw on a variety of educational theories including, but not limited to, constructivism, behaviorism, and self-determination theory. Constructivist frameworks support the idea that learners create knowledge through active engagement. This is similar to using chatbots with their potential for interactive and non-linear dialogues. The principles of behaviorism are also present in chatbots because learners gain immediate feedback, reinforcement in learning to perfect their responses, and an opportunity to repeatedly practice concepts. There are also key features of self-determination theory in relation to chatbot usage with the enhancement of learner autonomy and competence. There are a number of studies (such as Winkler & Söllner, 2018) that discuss the theoretical match between the activities or functions of chatbots to theory and suggest intelligent conversational agents can act as tutors and learning companions.

Construction of Educational Chatbots

The origins of educational chatbots go back to the 1960s with ELIZA, which was a rule-based system. ELIZA did not exhibit understanding, but set the stage for interactive systems. In the 2000s and afterward, the shift was toward AI chatbots with the sophistication brought about by developments in machine learning and NLP technologies.

By the time the 2010s rolled around, chatbots such as IBM Watson and Google Assistant began to inspire educational developers to incorporate these technologies to their learning platforms. Newer examples (e.g., Duolingo's chatbot and Replika) commonly integrate an emotional, context aware agent as a learning assistant.

Current Trends and Adoption in Education

Recent research shows educational contexts (K-12, HE and vocational) are increasingly keen to adopt AI chatbots in educational strategies. Chatbots are increasingly adopted in universities, and being used to support administrative tasks, answer learner inquiries, and tutoring. For example, "Pounce," a chatbot from Georgia State University has effectively answered student questions and even resulted in increased enrollment and retention.

In a 2022 survey by EDUCAUSE, the authors reported that 38% of universities located in North America are using or piloting the use of AI existed chatbot technology in learning management systems. The design of mobile-enabled learning and predominate asynchronous learning environments aid in the everyday application of chatbot technology.

Chatbots and Student Engagement

Engagement is an important element of the learning process and is often categorized into (1) behavioral, (2) emotional, and (3) cognitive domains of engagement. Chatbots have exhibited benefits in all three engagement domains; for example, the behavioral domain is supported through nudges, reminders, and task oriented notifications; the emotional domain is about the conversational interactions of the chatbot, where the learner feels less isolated.

Chatbots can help students think critically, identify relevant resources, and scaffold through challenging tasks in cognitive ways. For example, Pham et al. (2021) found that students who are regularly engaged with chatbots had more conceptual understanding and retention.

Empirical Studies Related to Learning Outcomes

Research focused on learning outcomes usually includes tests, assignments, and retention tests. Empirical studies exploring the impact of chatbots on learning outcomes have been conducted in several studies.

One study by Tegos, Demetriadis, and Tsiatsos (2020) setup a learning environment using a chatbot and compared it with a regular classroom learning environment. In short answer quizzes, students using the chatbot outperformed baseline students in both basic quizzes and cumulative quizzes performed better than the baseline controls.

Another study conducted by Okonkwo, and Ade-Ibijola (2021) studied programming students. The chatbot-assisted students were also more likely to complete coding tasks correctly and finish coding assignments, inferring they had increased problem-solving skills.

Study	Participants	Subject Area	Main Finding
Tegos et al. (2020)	students	Education Technology	Higher quiz and test scores with chatbot use
Okonkwo & Ade-Ibijola (2021)	85 CS students	Programming	Improved task completion and error correction
Pham et al. (2021)	200 secondary students	Math and Science	Increased cognitive engagement and retention

Feedback and Personalization Capabilities

Customized learning is the most exciting aspect of AI chatbots. Chatbots have the ability to personalize what was being delivered by analyzing student interactions, student performance histories, and student likes/dislikes related to content. This approach is very similar to the Universal Design for Learning (UDL) model that encourages multiple and flexible ways for acquiring knowledge.

Many systems use machine learning models to "learn" ways to enhance responses and/or recommendations. For example, IBM's Watson Education platform uses deep learning to modify the level of difficulty of presented material as well as suggest different paths for tailored learning.

Feedback, both formative and summative, is an essential component of the learning process. In addition to being customized, chatbots deliver feedback quickly, which lessens student frustration and improves persistence. The feedback provided by chatbots is dependent upon the complexity of the bot and the content domain; in general, some chatbots provide better feedback than others.

Student Perceptions and Satisfaction

Learner perception of chatbots is key for acceptance and ongoing use. In most studies, when chatbots are used in ways overall that show ease of use, trustworthiness, and contextual relevance, student satisfaction ratings were high. For example, Fadhil and Villafiorita (2017) reported that over three-quarters of participants preferred using the chatbot instead of relying on an email student administrative function.

Still, some users express concerns about the impersonal nature of chatbots (even a little bit) in general or especially regarding the emotional problem-solving associated with or complexity of the problem. In addition, students expect these interfaces will be intuitive and able to handle a broad range of queries. If these expectations for intuitiveness and versatility are unmet and --thus--the use drops significantly.

Constraints to Effectiveness

While findings have been positive, barriers still remain. Factors that could inhibit the effectiveness of chatbots that are rooted in technology include a lack of speech recognition, simple NLP models, and limited memory or contextual capabilities. Additionally, ethical considerations associated with data collection, algorithm biases, and people surveillance must be accounted for and governed carefully.

Equally as salient as these user-oriented barriers, is the issue of digital inequality. The issue of digital access is exacerbated by the requirement of digital technologies that are not universally available for all students to take full advantage of chatbot services; from stable internet, to updated devices to digital literacy options, practical barriers abound for many students.

Also, many of the limitations of chatbot comes from the programmed nature of them, in particular, chatbots that are programmed to represent a 'script'. If the bot is programmed and user input deviates, and the bot cannot respond, it could frustrate the user, and potentially disengage the user.

Comparison with Traditional Learning Supports

To truly evaluate and understand how chatbots will impact student learning, they must be compared to traditional learning supports such as peer tutoring, office hours, and email supports. In comparison, chatbots have immediacy and scalable aspects. Human instructors add emotional depth, and do more to promote substantive engagement (thinking and learning) than chatbots can.

Feature	Chatbots	Traditional Methods
Availability	24/7	Time-bound (office hours)
Scalability	High (serves many users simultaneously)	Limited by human capacity
Personalization	Moderate to high (based on data models)	High (based on teacher experience)
Emotional Intelligence	Low (limited empathy and nuance)	High (human understanding)
Cost Efficiency	High (low marginal cost after development)	Variable (staff salaries, training)

Future Trends and Directions

Future research and development will include developing chatbots which are emotional aware and affectively responsive with the aid of sentiment analysis and affective computing. Emotionally aware systems could provide more empathy and develop better responsibility for robots in intermediate human-computer interactions.

Another developing trend will be developing chatbots within Augmented Reality (AR) and Virtual Reality (VR) environments and their pedagogical role in instructional design. The introduction of AR and VR-based chatbots may further enhance engagement and bring greater depth of understanding to a new baseline of conceptual knowledge for student learners.

There will be increasing development of multilingual chatbots for various student populations. In collaboration with emerging AI algorithms, chatbots will lead to systems that are more culturally responsive and pedagogically sound

Based on the current literature it is clear the landscape for AI-enabled chatbots will have an immense potential for reshaping educational experiences through student engagement that provides improved learning experiences. Chatbots are not designed to replace educators, but enhance educational practices, particularly in a large-scale or distance-learning setting. This is followed by the idea of continually striving for innovation through research to remedy current limitations, ethical implementation, and constructive pedagogy within any educational design context.

RESEARCH METHODOLOGY

This section provides an overview of the methodological framework used to examine the effectiveness of Alpowered chatbots in promoting student engagement and enhancing learning outcomes. A mixed-methods design has been implemented to understand both the quantitative and qualitative aspects of the research problem systematically.

Research Design

A convergent parallel mixed-methods design was applied to integrate both quantitative and qualitative data which were collected at the same time. This design allows more rich interpretation through triangulation between statistical data and students' experiences and perspectives. The quantitative approaches were surveys and analysis of academic performance a and the qualitative approaches were interviews and focus groups.

This approach seeks insight into not only the amount of impact of student engagement or learning outcomes but also the quality of change and motivation students experience based on their use of AI chatbots.

Population and Sample

The population consisted of undergraduate students in online and blended learning courses and was part of three higher education institutions in Pakistan. Participants were chosen based on the active use of AI chatbot systems in their Learning Management Systems (LMS).

A stratified sampling method was utilized for this study to reflect the heterogeneity of the various faculties (Sciences, Humanities, and Technology) and academic years. The final sample consisted of 300 students for the quantitative study and 30 for the qualitative interviews and focus groups.

Instrumentation

Two instruments were concerned with this initial quantitative qualitative study:

1. Student Engagement and Learning Outcomes Survey (SELOS)

The SELOS survey was a self-report survey about student engagement (behavioral, emotional, and cognitive) and perceived learning outcomes. Some questionnaire items were adapted from validated instruments such as the National Survey of Student Engagement (NSSE), which were modified to relate to AI-powered chatbots.

2. Semi-Structured Interview Guide

The semi-structured interview guide considered students' perceptions of their chatbot use and interaction (user experience, engagement, how it facilitated their learning, challenges, and recommendations for improvement). The interview guide was confirmed by two educational technology experts for content validity.

Pilot Study

A pilot study with 30 students from a different university than the current study was conducted. The SELOS survey resulted in a Cronbach's alpha of 0.87, indicating adequate internal consistency. Minor changes to some of the wording for clarity were made based on the feedback.

Data Collection Methods

Data were collected over six weeks using the procedures listed below:

- 1. Surveys: An on-line link to the SELOS was posted on the institutional LMS and emails were sent out. Weekly reminders were issued to encourage the completion of the surveys.
- 2. Interviews and Focus Groups: These were conducted using Zoom and lasted approximately 30 45 minutes. Audio recordings of the interviews were made and later transcribed verbatim.
- 3. Academic Data: We collected students' final (letter) grades and quizzes associated with the courses where the chatbot was integrated (with consent) and compared them to the same data from listing semesters, when we did not use a chatbot for the courses.

Ethical Considerations

All procedures were in compliance with ethical standards outlined by the institution's research ethics board. All participants signed informed consents. Participation was voluntary and respondents could withdraw at any time. Confidentiality of the data was ensured through anonymizing data and secure storage.

Ethical Measure Details

Informed Consent Online form before survey and interviews Anonymous codes used for each participant Confidentiality

Data Protection Password-protected storage of survey and interview data

Right to Withdraw Participants could exit at any point without penalty

Data Analysis Methods

Different Methods of Analyzing Data were Used for Quantitative and Qualitative Data:

- Quantitative analysis: Data from the SELOS survey were analysed using SPSS 27. Descriptive statistics (mean, sd) were calculated to summarise the data. Inferential statistics, such as paired-sample t-tests and regression analysis, were used to consider the relationship between chatbot usage and learning outcomes.
- Qualitative analysis: Thematic analysis was conducted to code the transcripts of the interviews and focus groups. NVivo software was used to review and summarize common themes, such as usability, personalization, motivation, and perceived effectiveness.

Variables and Operational Definitions

To clarify the structure of the study, the main variables and their operational definitions are presented below:				
Variable	Type	Operational Definition		
Chatbot Interaction	Independent	Rate and quality of student engagement with AI chatbot during the course		
Student Engagement	Dependent	Levels of behavior, emotions, and cognitive presence in learning		
Learning Outcomes	Dependent	Quiz results, assignment grades, and self-reported learning improvements		
Prior Academic Record	Control	GPA and performance from previous semester		
Technology Familiarity	Control	Student ease and experience with educational technology		
Limitations of the Methodology				
The study is fraught with limitations despite significant design efforts.				
☐ Self-reported bias in the survey responses: The response likely reflected the students' perceptions but				
may or may not represent their actual experiences.				
Measurement of learning outcomes was limited to one semester to assess impact and learning outcomes				
to illustrate that students' perceptions might be recognized in the longer term; however, that cannot be ascertained				
in this study.				
☐ Technological disparities in the chatbot design and implementation differences, the outcome may be				
difficult to compare across institutions.				
Restricted validity in terms of generalizability to a national sample: The study included three				

Trustworthiness and Validity

Validating and corroborating the findings included several strategies:

☐ Triangulation of both qualitative and quantitative data enables researchers to provide a richer interpretation and cross-validation of results.

universities and student responses are unlikely to provide enough context for a national trend.

☐ Member checking occ	curred: selected	d participants	were provided	with a trans	script of the	interviews to
ensure that the researcher had cap	ptured their ex	periences acc	urately.			

 \Box Peer debriefing happened: two researchers external to the study reviewed the coding process and interpretation of the qualitative data.

☐ Instrument reliability was attempted: the disenfranchised perceptions survey had a pilot study to verify the participants' survey instrument and revised the survey tool based on feedback.

Innovations in Methodology

The study is innovative in that it manages to combine chatbot use logs (imported from their LMS) academic performance during the course and a student perceptions survey. It attempts to merge the students' digital behaviors with their academic performance and perceptions in a holistic manner. The study's methodological scope also adopts a learning analytics-informed model, allowing researchers to extract real-time data to supplement more traditional evaluation models.

The research methodology approach used in this study is designed to investigate multiple aspects of AI-powered chatbots in education. This research will include both quantitative performance data and qualitative perception data to provide a broad evaluation of chatbot usage in the facilitation of student engagement and academic performance. This research uses an intentional design, ethical protections, and the analytics used will help to make original contributions to the literature on AI in education.

RESULT & DISCUSSION

This section presents and discusses the performance outcomes derived from the quantitative and qualitative components of the study. The data were collected from student survey responses, formal academic performance reports, AI chatbots interaction logs, and interviews to assess AI-powered chatbots' effectiveness in either promoting student engagement or improvements in learning outcomes.

Descriptive Statistics of Student Engagement

The survey responses showed a generally positive acceptance of using chatbots by students. Overall, the students who participated in the survey reported a positive increase in a broader range of behavioral, emotional, and cognitive engagement after utilizing AI-powered chatbots in their courses. A Likert-scale survey was used to evaluate engagement in three categories:

Engagement Dimension Mean (M) Standard Deviation (SD)

Behavioral Engagement	4.21	0.62
Emotional Engagement	4.10	0.75
Cognitive Engagement	4.36	0.58

The average scores (out of 5 points) suggest that students thought chatbots were beneficial in sustaining attention and participation and supporting deeper learning. Behavioral engagement was most impacted by chatbot reminders and progress tracking. Emotional engagement appeared to be positively impacted by the friendly tone and availability of the chatbot. Cognitive_dtype engagement drew some improvements by providing instant feedback and clarifications while engaging in self-paced tasks.

Academic Performance and Learning Outcomes

Academic performance were evaluated by analyzing scores of students who had used chatbots (treatment group) with scores of those who had not used the unveil chatbots (control group)-across end-of-semester scores and quiz scores.

Assessment Type	Chatbot Users (M)	Non-Users (M)	Difference	p-value
Final Course Grade	81.4	74.7	+6.7	0.003
Quiz Average	84.1	77.5	+6.6	0.005
Assignment Completion %	91.3	84.2	+7.1	0.002

The paired-sample t-test demonstrated statistically significant improvements in academic outcomes among chatbot users (p < 0.01). This indicates that support provided by the chatbot was helpful not only in motivational capacity, but also in knowledge retention/performance.

Student Interactions with Chatbots

We reviewed the system interaction logs to identify usage patterns and their relationship with performance. Students who interacted with the chatbot at least three times weekly, tended to have higher assignment completion rates and reduced dropout risk.

Chatbot Interaction Frequency Average Grade (%) Dropout Rate (%)

High (3+ times/week)	85.7	3.1
Moderate (1–2 times/week)	78.5	7.4
Low (<1 time/week)	72.2	12.6

The analysis confirms that routine use of a chatbot results in academic consistency and persistence.

Themes Emerging from Qualitative Interviews Qualitative data were coded for important themes. Thematic analysis produced five overarching themes regarding the chatbots' impact:

- 1.Quick Support and Clarity: Students appreciated having the chatbot available via text messaging to answer questions they posed. Access was particularly helpful at late-night study sessions.
- 2.Reduced Anxiety for Asking Questions: Chatbots interface in a non-threatening style without judge mental risk that some students have regarding asking questions. This offered some ability for more shy or anxious students.
- 3. Motivation and Encouragement: Students cited encouragement and connection to milestones as motivating when presented by the chatbot.
- 4.Limitations for the Understanding: Several students expressed frustration when they asked a complex question or questioned who asked that was deemed ambiguous with obvious replies.
- 5. Hybrid Preference: A number of students enjoyed the combination of chatbot with a human teacher, but neither truly replaced the other.

Discussion of Findings Related to Student Engagement These findings relate to previous literature that recognizes the value of chatbots to recognize as tools for engaging students in active learning. The increase in behavioral engagement can be considered improved work/life management and academic routine, as the chatbots often provide reminders and cues to engage their work. The greater emotional engagement was largely attributed to students' perceived accessibility of chatbots and constant availability; on a few occasions, students referred to the chatbot systems as a,"digital companion."

Cognitive engagement was very high for chatbot users. The capability of a chatbot to generate personal learning prompts with questions and appropriate resources helped develop further interaction with content. These results support the notion that well-designed AI systems may be utilized in constructivist learning environments.

Discussion of Learning Outcomes

The improvement in academic performance among chatbot users was statistically significant enough to suggest that AI powered systems help develop learning outcomes. This performance aligns with previous studies such as Tegos et al.'s (2020) researched link between chatbot use and positive academic outcomes.

The correlation between frequency of chatbot use and performance seems to suggest that more frequent usage results in more frequent study behaviors with hopefully less missed deadlines. This links with principles of spaced learning and retrieval practice, which are empirically researched strategies for improving long-term learning.

Challenges and Limitations Identified

While there were useful findings, there were limitations of which the learners presented challenges. Students communicated that they missed the context and emotional inflection in the chatbot answers, which likely led to frustration when a learner's intent was misunderstood by the chatbot or a complex query was lost because of inadequate escalation.

Additionally, some learners described "overuse fatigue" referring to the experience that they became desensitized to too many prompts and notifications from the chatbot, which ultimately suggests a customizable chatbot, designed to match learner needs and be disciplined by the learner.

Differences Between Disciplines and Fields

More analysis uncovered differences in effectiveness across academic disciplines. STEM students saw more value in the chatbot as a tutoring tool (for example, to solve equations, provide coding hints) while Humanities students preferred to engage in human-led discussions.

Discipline	Average Engagement Rating	Chatbot Usefulness (%)
Engineering	4.35	88%
Computer Science	4.48	91%
Social Sciences	3.89	74%
Humanities	3.71	69%

The results suggest that the design of chatbots should be discipline-specific to achieve optimal efficacy.

Integration with Pedagogical Practices

Chatbots seemed to have a greater impact on learning outcomes when situated within pedagogical practices. For example, we found that courses employing chatbots embedded in the syllabus, using aligned quiz questions with chatbot feedback and course analytics to monitor trends in learning gained stronger learning outcomes than courses where chatbots served as technology add-ons.

In essence, educators and instructional designers should treat chatbots like pedagogical tools (rather than just a new technology). As mentioned previously, for chatbots to achieve their desired impact educators need to ensure proper orientation, aligned assessments, and synchronized content.

Implications for Educational Practice

The findings of this study have a number of implications for educators and educational institutions, including the following:

- Scalability: AI chatbots provide scalable learning support, especially suited to larger or distance learning classes with limited opportunities for individualized human-to-human interaction.
- Supplementary function: Chatbots as pedagogical tools work best in a supplementary role, rather than as substitutes of teachers.
- Design responsiveness: Chatbots will only succeed if the content design involved accuracy of content, responsiveness to the types of questions being returned by students, and opportunities for students to adapt their learning to suit their own needs.
- Training/orienting students: Providing students with instructional support on how to interact with the chatbots to optimize their learning.

This study provides evidence that AI chatbots provide a measurable positive effect on student engagement and learning outcomes. Increased interaction with course material, instantaneous support for questions and queries, and personal learning experiences.

However, these instruments come with obstacles. Content constraints, emotional awareness, and user fatigue all raise questions about how to thoughtfully integrate (and continuously improve) how we are using these tools.

The current results contribute in some measure to the existing evidence base affirming the potential of AI to enhance educational possibilities and provide actionable information for researchers, funding bodies, policy-makers and educational users wishing to maximize the teaching and learning potential of intelligent technologies.

CONCLUSION

The rise of artificial intelligence within education has unearthed transformative tools that are changing how students learn and access knowledge. Among these, AI-based chatbots have the potential to constitute a new opportunity to enhance the education experience by offering students a responsive learning experience of support defined by personalization and scalability that was not previously available in traditional models of support. The purpose of this study was to evaluate the impact of chatbots considered alongside more traditional means of support for students in relation to engagement with materials and learning outcomes against traditional modes. A mixed-method approach was used to provide an overview of the study, giving substantial evidence that chatbots are not simply a piece of technology; chatbots have more potential to develop into a pedagogical tool that has benefits for engagement with learning and a more long-term impact.

The outcomes from the research revealed, across the student cohort, the degree to which student engagement could be enhanced simply through the presence of an AI chatbot for a subject in considering learning environments. Further, the indicators of engagement reported increase in students' behavioral engagement. Students reported greater behavioral engagement primarily due to the constant reminders, trackers of progress, and on-demand assistance.

Emotional engagement also improved because the students felt like they were being supported by a system that was always available and could answer questions without judgement or delay. Most importantly, cognitive engagement was improved through chatbot-guided exploration of content, critical thinking prompts and personalized feedback. The connections articulated above highlight the chatbot's ability to respond to various dependant learner needs and support agency, two key principles of contemporary education.

The impact on learning outcomes is just as valuable. From a quantitative perspective, the results of the comparisons indicated that students who engaged with chatbots regularly performed better on quizzes, assignments, and final grades compared to students who didn't use the tool in the course. The differences were not only statistically significant, they were also educationally significant, leading one to believe that chatbots may be playing a potentially greater role than a supplemental tool but rather as a partner in the learning process. The increase in performance in all assessed areas can possibly be attributed to a variety of aspects of chatbot learning: availability for clarification of concepts, personalization of the learning pathway and feedback mechanisms that adapt to ensure learning outcomes aligned with learning goals.

Qualitative data from interviews and focus groups added another layer of richness to the initial findings; students noted that being able to speak to chatbots for timely responses, having a study partner, and reducing hesitance with respect to repeated and "simple" questions in front of peers, we all benefits.

The provision of low-stakes, self-paced engagement prompted many learners to maintain regular study habits and seek support more often. These experiences highlight the importance of chatbots in supporting not only academic performance, but also learner confidence and perseverance.

The study also identified some challenges that must not be discounted. One obvious challenge concerns a number of the current chatbot systems and the inability to process questions that are contextually rich, emotionally complex, and ambiguous. While AI has made significant advancements the subtleties of human dialogue are still often lacking in the majority of chatbot interactions. Related to this is the issue of dependency on automated systems resulting in fewer opportunities for human interaction, collaboration and abstractions such as higher order thinking if the delivery of automated systems is not clearly articulated and purposefully planned across the curriculum. In this regard, feedback from students illustrated that in order to realize the benefits of AI supported

learning outcomes, there must be an intention to maintain a hybrid approach in which AI complements the human educator rather than replaces them.

Another challenge is related to the design and use of chatbot systems alongside an existing framework of learning and teaching practice. A number of the educational institutions reported their chatbot work was very valuable because chatbots were fully integrated - designed in alignment with content, consistent messaging and collaboration with instructors.

On the other hand, when we thought of them as standalone or poorly integrated tools, they offered less impact. This emphasizes the need for educational institutions to consider not only the technology itself, but also ways to implement it strategically, train faculty, and curate content to ensure that they realise all of the potential benefits. Another challenge presented itself in connection to digital equity and data privacy. Using AI chatbots effectively is not only reliant on having access to the internet, but also having access to, or ability to pay for, devices and some form of digital literacy. The resources needed to effectively implement this innovation in learning are not available with the same equity among all learners and learning communities. Moreover, effective chatbots rely upon students having data collected about them to offer personalisation in their learning experiences. This requires due vigilance in determining privacy provisions and ethical considerations to safeguard students in a learning environment.

Despite these issues, I am very optimistic about the implications that have come from this study. AI enabled chatbots are a very useful tool to address gaps in learning, provide timeliness in supporting learning, and promote engagement in diverse learning educational contexts when designed and implemented thoughtfully. Its scale, cost efficient, and personalising learning support makes it a very useful tool for large or distance classrooms that may not have ways to traditional support students learning pathways.

Continuous development of educational chatbots for the future will be potential. This could involve skills and functionality in the realms of natural language processing, emotion detection, or adaptive learning systems.

As these technologies progress, chatbots will continue to develop a more sophisticated understanding of context and emotion, they will form part of the larger educational ecosystem. Educators and institutions will continue to investigate how best to leverage these tools, not only to improve students' test scores, but also to nurture and develop curiosity, creativity, and a love of lifelong learning.

In summary, AI-powered chatbots have emerged as being more than just a shiny tech novelty, they represent a movement toward a more intelligent, responsive and learner-oriented type of education. They cannot—and should not—act as a substitute for human teachers and, at best, can only offer utilization as a potential influencer and collaborator to promote student engagement, learner success and achievement. We must strive to improve intelligence of chatbots, ensure equitable access, and effectively and efficiently integrate them into pedagogical approaches so that they can realize their potential and relationship within a multitude of interacting technologies. It is through research, exploration, and ethical practices, that chatbots can transform education into a more inclusive, engaging, and useful experience for all learners.

REFERENCES

- Aleven, V., McLaughlin, E. A., Glenn, R., & Koedinger, K. R. (2017). Intelligent tutoring systems: A foundational technology for artificial intelligence in education. *International Journal of Artificial Intelligence in Education*, 27(1), 204–210. https://doi.org/10.1007/s40593-016-0115-y
- Fadhil, A., & Villafiorita, A. (2017). An adaptive learning with gamification and conversational UIs: The rise of motivational bots. In *Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization* (pp. 408–412). ACM. https://doi.org/10.1145/3099023.3099117
- Okonkwo, C. W., & Ade-Ibijola, A. (2021). Chatbots applications in education: A systematic review. *Computers and Education: Artificial Intelligence*, 2, 100033. https://doi.org/10.1016/j.caeai.2021.100033
- Pham, Q., Nguyen, D. C., Hwang, D., Pathirana, P. N., & Ding, M. (2021). Artificial intelligence (AI) and big data for education: A review and outlook. *IEEE Access*, 9, 25523–25541. https://doi.org/10.1109/ACCESS.2021.3057652
- Tegos, S., Demetriadis, S., & Tsiatsos, T. (2020). A study on the impact of pedagogical conversational agents on student learning in educational settings. *Education and Information Technologies*, 25(2), 1137–1158. https://doi.org/10.1007/s10639-019-10005-2
- Winkler, R., & Söllner, M. (2018). Unleashing the potential of chatbots in education: A state-of-the-art analysis. In *Proceedings of the 2018 IEEE Global Engineering Education Conference (EDUCON)* (pp. 1646–1652). IEEE. https://doi.org/10.1109/EDUCON.2018.8363370
- EDUCAUSE. (2022). 2022 Horizon Report: Teaching and Learning Edition. EDUCAUSE. Retrieved from https://library.educause.edu/resources/2022/4/2022-horizon-report-teaching-and-learning-edition
- Watson Education. (2020). *How Watson is transforming education with AI*. IBM. Retrieved from https://www.ibm.com/watson-education

- Creswell, J. W., & Plano Clark, V. L. (2018). *Designing and conducting mixed methods research* (3rd ed.). SAGE Publications.
- Flick, U. (2018). An introduction to qualitative research (6th ed.). SAGE Publications.
- Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2019). *How to design and evaluate research in education* (10th ed.). McGraw-Hill Education.
- Gay, L. R., Mills, G. E., & Airasian, P. W. (2012). *Educational research: Competencies for analysis and applications* (10th ed.). Pearson.
- Kuckartz, U. (2014). Qualitative text analysis: A guide to methods, practice & using software. SAGE Publications.
- Miles, M. B., Huberman, A. M., & Saldaña, J. (2020). *Qualitative data analysis: A methods sourcebook* (4th ed.). SAGE Publications.
- Nassaji, H. (2015). Qualitative and quantitative research in applied linguistics: Differences, and similarities. *Theory and Practice in Language Studies*, 5(3), 421–429. https://doi.org/10.17507/tpls.0503.11
- Punch, K. F. (2013). *Introduction to social research: Quantitative and qualitative approaches* (3rd ed.). SAGE Publications.
- Saldaña, J. (2021). The coding manual for qualitative researchers (4th ed.). SAGE Publications.
- Taber, K. S. (2018). The use of Cronbach's alpha when developing and reporting research instruments in science education. *Research in Science Education*, 48(6), 1273–1296. https://doi.org/10.1007/s11165-016-9602-2
- EDUCAUSE. (2022). 2022 Horizon Report: Teaching and Learning Edition. EDUCAUSE. Retrieved from https://library.educause.edu/resources/2022/4/2022-horizon-report-teaching-and-learning-edition
- Fadhil, A., & Villafiorita, A. (2017). An adaptive learning with gamification and conversational UIs: The rise of motivational bots. In *Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization* (pp. 408–412). ACM. https://doi.org/10.1145/3099023.3099117
- Kumar, P., Bhatia, P., & Garg, N. (2021). Evaluating the effectiveness of AI-enabled educational chatbots for student learning and engagement. *International Journal of Educational Technology in Higher Education*, 18(1), 1–17. https://doi.org/10.1186/s41239-021-00273-3
- Okonkwo, C. W., & Ade-Ibijola, A. (2021). Chatbots applications in education: A systematic review. *Computers and Education: Artificial Intelligence, 2*, 100033. https://doi.org/10.1016/j.caeai.2021.100033
- Pham, Q. V., Nguyen, D. C., Hwang, D., Pathirana, P. N., & Ding, M. (2021). Artificial intelligence (AI) and big data for education: A review and outlook. *IEEE Access*, 9, 25523–25541. https://doi.org/10.1109/ACCESS.2021.3057652
- Tegos, S., Demetriadis, S., & Tsiatsos, T. (2020). A study on the impact of pedagogical conversational agents on student learning in educational settings. *Education and Information Technologies*, 25(2), 1137–1158. https://doi.org/10.1007/s10639-019-10005-2
- Winkler, R., & Söllner, M. (2018). Unleashing the potential of chatbots in education: A state-of-the-art analysis. In *Proceedings of the 2018 IEEE Global Engineering Education Conference (EDUCON)* (pp. 1646–1652). IEEE. https://doi.org/10.1109/EDUCON.2018.8363370