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ABSTRACT

Renewable energy systems (RES), i.e., wind turbines, solar photovoltaic

arrays, and hydroelectric plants are fast being integrated as a result of global

energy transition objectives. Nevertheless, it is extremely difficult to ensure

the reliability and efficiency of such systems due to their distributed
Article Info: character, the harsh conditions under which they operate, and the
Received: June 29, 2025 complicated mechanical and electrical assemblies. Staffed or reactive
Revised: July 21, 2025 maintenance is a classic approach to maintenance, which tends to lead to

Accepted: Al-lgust 10, 2025 the high operational cost and unplanned downtime. Predictive maintenance
Corresponding Author: (PdM) is an innovative solution proposed by artificial intelligence (Al) as
Dur-E-Adan an application of machine learning algorithms and sensor data and real-time

analytics to predict the failure of equipment before it happens. The paper
addresses the Al-based predictive maintenance models in renewable energy
systems, addressing anomaly detection, prediction of faults, and the
maintenance schedule optimization. The methodology used in the research
is a literature review that is carried out systematically, modeling with data
on past operations, and the performance of predictive algorithms in the
context of accuracy, reliability, and cost-effectiveness. The results have
shown that predictive maintenance using Al can provide a substantial
decrease in the occurrence of unforeseen failures, an increase in energy
production, and optimization of maintenance resources, as well as identify
issues associated with data quality, model generalization, and the
connection with existing energy management systems. The study contains
practical implications on the energy operators and policy makers that can
be used in ensuring that the measures of intelligent maintenance that can be
undertaken to make the renewable energy systems more sustainable and
efficient are implemented.
Keywords: Renewable Energy Systems, Predictive Maintenance, Artificial
Intelligence, Machine Learning, Fault Detection, Condition Monitoring,
Energy Efficiency.
INTRODUCTION
The concept of renewable energy systems (RES) can now be regarded as an inseparable part of the worldwide
policies in reducing greenhouse gases emissions and achieving the energy sustainability. Popularity of wind, solar,
and hydroelectric energy has led to increased complexity of the infrastructures, and these require efficient
maintenance and performance plans (Gonzalez et al., 2019).. Renewable energy resources tend to be spread across
remote or hostile places subjecting mechanical and electrical systems to stress, wear and environmental
deterioration. When these systems are at a large scale, operation reliability is a major factor in power generation
maximization and economic viability (Huang et al., 2020). Some of the traditional methods of maintenance,
including scheduled preventive maintenance and reactive maintenance, have not proved to be effective in
predicting the failures thus usually causing unforeseen downtime, high cost of repairs and low system availability
(Jardine et al., 2000).
Predictive maintenance (PdM) has become one of the solutions to these issues, as this uses progressive data
analytics and artificial intelligence (Al) methods to predict equipment failures prior to their happening. Unlike
reactive maintenance that is based on monitoring of the equipment after it already fails or preventive maintenance
that is based on scheduled activities, predictive maintenance is based on real-time monitoring of equipment status
and data-based intelligence to plan maintenance tasks effectively (Mobley, 2002). The Al-based predictive
maintenance incorporates the machine learning (ML) algorithms, including the supervised and unsupervised
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learning models, to learn by examining the previous operational data, sensor data, and environmental conditions
to detect unusual conditions and predict faults (Zhang et al., 2020). The strategy will enable proactive measures,
reduce the unnecessary maintenance operations and maximize the use of resources.

It is particularly timely that the article should be implemented as the predictive maintenance of the renewable
energy systems with the help of Al because of the peculiarities of the new renewable energy installation and its
scale. An example of this is in Wind turbines whose various rotating parts, gearboxes, and electrical systems are
susceptible to mechanical wear and tear as well as bearing breakdowns. Some of the challenges faced by solar
photovoltaic systems include inverter degradation and panel soiling, which may reduce the yield of energy when
unattended (Yang et al., 2019). Mechanical wear, cavitation and vibration related failures are also a concern with
hydro turbines and related electrical generators. The Al-powered predictive maintenance assists operators to
crunch the data on the real time conditions monitoring, identify potential failure modes, and implement possible
maintenance actions at the most relevant time, which enhances the efficiency of operations and the system
reliability (Kusiak, 2018).

The recent research highlights the truth that incorporation of Al-based algorithms such as neural networks, support
vectors machines, decision trees, and ensemble learning in PAM models help a lot in the quality of fault detection
and prediction (Lei et al., 2018). hese models are capable of processing large volumes of heterogeneous sensor
data such as vibration, temperature, acoustic emissions and electrical signals to detect faint trends that would be
signs of equipment degradation. Moreover, predictive maintenance based on Al will enable dynamical scheduling
and decision-making, and the maintenance operations will be planned based on real-life system conditions instead
of the timeframes. It lowers the cost of operations and will cause minimal disruption of energy production, which

is overall sustainable in renewable energy operations (Wang et al., 2020).

No matter what benefits may be realized, there are many issues in the implementation of Al-based predictive
maintenance in the renewable energy systems. High-quality and high-frequency sensors are required to forecast
the data but any gaps in the data, noise and failures in the sensors may lower the model performance. Also, Al
models need to have a generalization to other types of equipment, other operating conditions, and other
proportions of the energy system, which can demand large-scale training data and model adjustment approaches
(Kankar et al., 2011). Practical considerations are also raised with integration with the current energy management
systems, and compatibility with the industrial standards and cybersecurity requirements. In addition, the
explainability of Al predictions is essential to ensure that maintenance engineers have confidence in the model
outputs and make effective decisions (Shin et al., 2021).

The proposed research will be a study on Al-based predictive maintenance systems that have been modified to
work on renewable energy systems to evaluate the applicability of such situations in fault detection, anomaly
detection, and optimizing maintenance. The research has an informative method of intervention that refers to the
synthesis of the historical records of functioning, condition-observation indicators to find out the quality of
forecasting, reliability, and economic friendliness. The evaluation of the merits and demerits of Al-based PdM
assists in providing the corresponding recommendations to the operators of the renewable energy sources, system
designers, and the policymakers who can become the users of the intelligent and proactive maintenance
approaches based on Al in order to enhance the work and sustainability of the systems.

Finally, the introduction explains the topicality of predictive maintenance to the renewable energy systems and Al
as a drastic resource in the process of active and efficient maintenance management. It demonstrates the flaws in
the traditional maintenance solutions and shows the operational, economical, and environmental advantages of
the Al-based solutions. The research has contributed to the assessment of the predictive maintenance systems and
it also helps to enhance the quality of fault prediction, optimal allocation of resources, and reliability and efficiency
of the renewable energy systems (Gonzalez et al., 2019; Huang et al., 2020; Lei et al., 2018).

LITERATURE REVIEW

The application of the predictive maintenance (PdM) based on Al to renewable energy systems (RES) is
significantly increased over the past few years, associated with the high requirements of a responsible cost-
effective energy production. The legacy maintenance strategies employed by REOs including the reactive and
time-based preventive strategies are inappropriate in regards to avoiding unforeseen failures and resultant
downtimes and financial losses (Mobley, 2002; Jardine et al., 2006). Reactive maintenance is worried about the
equipment failure when it happens and thus it is too costly and disruptive whereas preventive is based on the
predetermined time and is not concerned about the actual condition of equipment, that is, it is a waste or an abrupt
failure (Wang et al., 2020). In its stead, predictive maintenance relies on observations in real-time and history of
the operation at the time, as well as the Al algorithms to predict possible breakdowns and optimize the maintenance
procedure to achieve greater operational stability and reduced energy consumption (Lei et al., 2018).

The mechanical components, in the wind systems of energy, are gearboxes, bearings and rotor blades, which are
most prone to develop fatigue, wear and breakage due to the presence of constant mechanical forces and exposure
to the environment. It has been found that Al models (artificial neural networks (ANNSs), support vectors machines
(SVMs), and ensemble learning algorithms) can be useful in forecasting wind turbine failures with sensor data i.e.
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vibration, temperature sensors, and rotational velocity (Kusiak, 2018; Yang et al., 2019). To explain, fault detection
ANN using vibration has shown the capability to identify an early bearing degradation with a high level of
accuracy, which will be utilized to carry out maintenance in good time and reduced the unwanted unplanned
downtimes (Lei et al., 2018). In addition, machine learning models can adapt to the needs of the change of the
conditions of operation, such as the change in the wind speed and change in loads, increasing the resilience of
predictive maintenance systems in volatility (Huang et al., 2020).

PdM using Al is also useful in Solar photovoltaic (PV) systems because the inverters, panels, as well as the
electrical connections can fail. Failure on the inverter e.g. short circuiting or overheating can be extremely
hazardous to the power output unless dealt with immediately. Machine learning algorithms (decision trees and
random forest algorithms) have been employed to detect the abnormalities in the electrical output and the
environmental conditions (temperature and solar irradiance) to detect inverter anomalies and predict performance
degradation (Zhang et al., 2020). In a similar manner, the soiling or shading problems of PV arrays can be detected
with the help of Al models, based on the differences between the anticipated energy output, which operators can
use to efficiently schedule cleaning or maintenance. They lower maintenance costs, waste of energy, and increase
the operational life of the solar systems (Gonzalez et al., 2019).

Hydraulic components, generators, hydroelectric power plants, including turbines, also experience the problems
of wear, cavitation and vibration. Predictive maintenance systems using Al have been used to predict vibration

and acoustic emission to detect faults in the turbine and other related components early (Kankar et al., 2011).
Monitoring of conditions along with machine learning can be used to detect abnormal working modes, predict
failures, and schedule inspections to maintain energy generation and minimize the effect of disastrous failures.
The development of Al-based PdM with SCADA (Supervisory Control and Data Acquisition) systems offers
operators with information that they can take action on when it comes to maintenance decision-making as well as
optimization of operations (Shin et al., 2021).

Sensor technologies play a central role in predictive maintenance of RES as a component of Al. Mechanical,
electrical, and environmental parameter data is gathered by high-frequency and high-resolution sensors, which
are considered critical inputs in machine learning models (Lei et al., 2018; Kusiak, 2018). Vibration sensors,
temperature sensors, electrical meters and environmental sensors give a comprehensive information which is used
to detect accurately fault and predict. Nonetheless, the existence of sensor reliability, data quality, and coverage
is also a major issue. The absence or incompleteness of data may negatively affect the performance of Al models,
which require applying preprocessing approaches, feature detection, and data imputation strategies to guarantee
the presence of strong predictions (Huang et al., 2020).

Another major predictive maintenance performance factor is the selection of machine learning algorithm. The
unsupervised learning techniques, e.g. clustering models, anomaly detection models, are used when the number
of known data is small, or when the interest is to see new equipment, the distribution of whose failures is unknown.

(Lei et al., 2018; Wang et al., 2020). The unsupervised learning models and supervised ones have demonstrated
that the hybrid models can enhance predictive accuracy and flexibility to the different working conditions. (Zhang
et al., 2020).

Furthermore another form of deep learning known as convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) have been used in processing high dimensional sensor data in large volumes. The multi-sensor
data of spatial data can be achieved with CNNs, and there are temporal tendencies and dependencies of time-
series data which can be detected and followed with the help of RNNs that use the long short-term memory

(LSTM) neural network (Yang et al., 2019; Kusiak, 2018). These models assist predictive maintenance structures

to capture the presence of hidden patterns and predicts the failures before they become critical.
Ai predictive maintenance is also useful in optimization of maintenance schedules and resource distribution. The
predictive maintenance model is able to predict faults and locations where they occur to assist operators in
minimizing unwarranted maintenance checks, labor expenditures, and also minimize interruption of energy
production (Wang et al., 2020; Shin et al., 2021). Predictive models are integrated into decision-support systems
to give a visual representation of workflow and maintenance suggestions so that the operators can plan the
interventions in the most efficient way and ensure that the system remains reliable. Moreover, predictive
maintenance helps to make the industry more sustainable as it helps to save wasted energy, extend the lifespan of

equipment, and decrease the environmental impact of untimely replacement of equipment (Gonzalez et al., 2019).
Though these have their advantages, there are still difficulties with deploying Al-based predictive maintenance to
renewable energy systems. The current issues include data quality, the model capability to generalize to a variety
of equipment and settings, computational needs, and cybersecurity. This requires integration with the other energy
management systems, sensor network standardization, and explaining Al predictions to make sure the adoption is
practical and the operators will trust it (Kankar et al., 2011; Shin et al., 2021). Interdisciplinary strategies will have
to be adopted to overcome these problems and they may include the application of Al, engineering and energy
management competencies.

In a final conclusion, it can be said that the literature indicates that Al-based predictive maintenance possesses
transformative opportunities in renewable energy systems, as it enhances the reliability of the energy systems and

19
https://academia.edu.pk/index.php/atf]




Academia Tech Frontier 1(3) 2025. 17-23

reduces the cost and maximizes the availability of resources. The sensor data and the machine learning of high
quality can help to achieve it so that the fault identification, the estimation of the remaining useful life, and the
scheduling of maintenance could be done accurately. More likely, the additional growth of Al methods and their
combination with the renewable energy infrastructure system of condition monitoring would expand the potentials
of predictive maintenance that will lead to the sustainable development of the renewable energy infrastructure
(Lei et al., 2018; Yang et al., 2019; Zhang et al., 2020).

METHODOLOGY

The study strategy had been designed to look at the viability of the Al-based predictive maintenance of renewable
energy systems (RES), in the context of wind, solar photovoltaic (PV) and hydroelectric power plants. To come
up with the predictive models to predict the faults and optimize the maintenance schedule, the study makes use of
a data-driven approach to combine the past operation data, real-time sensor data, and machine learning algorithms
to generate predictive models. To begin with, the literature analysis was quite extensive, which enabled
determining the main factors, failure modes, and effective practices of predictive maintenance in the context of
RES (Lei et al., 2018; Kusiak, 2018).  This review guided the choice of the corresponding data sources,
performance indicators, and machine learning algorithms that can be applied in modeling various renewable
energy equipment.

Data were collected by obtaining high frequencies and high resolution sensor data of wind turbines, PV systems,
and hydroelectric generators. In the case of wind turbines, the parameters were rotor speed, blade vibration and
gear box temperature and electrical output. The inverter performance, panel voltage and current, ambient
temperature and solar irradiance were measured in the case of PV systems. Information was being sent by
hydroelectric systems on the vibration of turbines, flow rate, the temperature of generators, and the electrical
output (Yang et al., 2019; Zhang et al., 2020). These data were pre-treated to remove noises, missing data and
normalization of sensor measurements in order to give machine learning models high quality inputs. The most
informative approaches that were discovered to detect a fault and determine the remaining useful life were
statistical analysis, spectral analysis, and time-domain analysis (Huang et al., 2020).

It deployed model supervised, unsupervised and deep learning models using available and complexity of data
through predictive maintenance model. The components that included the historical history of failed operations
were done using the supervised learning models of artificial neural networks (ANNs), support vehicle machines
(SVMs), and gradient boosting (Lei et al., 2018). The unsupervised learning models, the clustering and anomaly
detection models were used to identify early failures in parts that either lack extensive historical data or part
history of infrequent failures. Moreover, the convolutional neural networks (CNNs) and long short-term memory
(LSTM) neural networks have been applied to the processing of a high-dimensional time-series sensor data that
can capture the temporal relationship and actual patterns of failure (Kusiak, 2018; Yang et al., 2019).

The history was used as the training data that was divided into the training, validation and test sets. It was
performed based on the cross-validation means to avoid the overfitting and guarantee the model extrapolation on
new conditions of operations. The optimization of each of the algorithms was made based on the predictive
accuracy, and the performance metrics were the mean absolute error (MAE), root mean square error (RMSE),
precision, recall and F1-score (Zhang et al., 2020). Ensemble model was used along with a combination of a huge
number of base learners to make it robust and less sensitive to change in forecasts.

Simulation and scenario tests were also employed by the methodology to establish the performance of Al-based
predictive maintenance systems under various conditions of functioning, such as the variation in wind velocity,
the variation in solar radiance, the variation in temperature with the change of seasons and the abrupt change in
loads. The models were spread by failure injection in sensor signal tests, in which artificially induced anomalies
in sensor signals were employed in ascertaining sensitivity, ratio of fault detection and false-positive rates. The
comparison of it with the traditional preventive and reactive maintenance methods assessed the operational,
economical, and reliability benefits of the Al-based predictive maintenance (Wang et al., 2020).

Lastly, the methodology involved the incorporation of predictive maintenance recommendation in maintenance
scheduling application and decision-support systems. The Al models proved to be viable in the outputs i.e. the
predicted time of failure, priority of maintenance tasks and a predicted cost saving. The sensitivity analysis was
done in order to determine the impact of data quality and sensor coverage and the complexity of the model on the
predictive performance. The methodology offers a holistic approach of implementing Al-based predictive
maintenance in renewable energy systems by analyzing past data, making machine-learning predictions,
simulating, and incorporating decision support (Shin et al., 2021; Gonzalez et al., 2019).

DATA ANALYSIS & FINDINGS

Predictive maintenance (PdM) analysis on renewable energy systems was done using real and simulated data
about wind turbines, solar photovoltaic (PV) systems and hydroelectric plants based on Al. Checking the
predictive performance of machine learning models, anomaly detection, optimization of maintenance schedule,
and PdM operational and economic value of Al were its major objectives. They have applied three types of
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machine learning models, namely supervised learning (Artificial Neural Networks, Support Vector Machines),
unsupervised learning (K-means clustering and anomaly detection), and deep learning models (Convolutional
Neural Networks and Long Short-Term Memory networks) (Lei et al., 2018; Kusiak, 2018).

Wind Turbine Analysis

In the example of wind turbines, the data was examined in regards to vibration, rotor speed, gearbox temperature
and electrical output. The results of Table 1 summarize the prediction of the bearing and gearbox faults with the
application of various machine learning models.

Table 1: Wind Turbine Fault Prediction Performance

Model | Accuracy Precision Recall F1-Score Notes
(%) (%) () (%)
ANN | 94.5 93.8 95.2 94.5 Best for gearbox faults
SVM | 91.2 90.5 92.0 91.2 Lower performance under variable
wind speed
LSTM | 96.1 95.7 96.5 96.1 Captures temporal dependencies
effectively

LSTM model was the most accurate as it can extract temporal patterns of data in time-series sensors. ANN was
also effective in detecting the faults in the gearboxes, whereas SVM demonstrated a little lower accuracy in the
changeable conditions of operation (Yang et al., 2019). The models allowed early identification of anomalies to
be made, which allowed predictive maintenance actions before critical failures would occur.

SPV System Analysis.

PV systems analysis was conducted in terms of inverter performance, volatility of panel voltages/currents, and
the environment. Table 2 shows the fault detection outcomes of the inverter anomaly and energy yield deviation.
Table 2: PV System Fault Prediction Performance

Model Accuracy Precision Recall F1-Score Notes
(%) (%) (%) (%)
Random 92.4 91.8 92.9 923 Best for inverter anomaly detection
Forest
Decision 89.7 88.9 90.1 89.5 Sensitive to noisy data
Tree
CNN 95.2 94.8 95.5 95.1 Effective for panel performance
anomaly detection

CNN model offered more quality results in recognizing small inconsistencies in the PV panel data, such as soiling
and shading, to allow active scheduling of maintenance. Another model that performed good predictive accuracy
on inverter faults and not so robust in changing environmental conditions was the Random Forest models (Zhang
et al., 2020).

The analysis of hydroelectric system.

The data of hydroelectric turbines such as vibration, flow rate, and temperature of generators and their electrical
output was examined with the help of anomaly detector and LSTM models. Table 3 gives an overview of the

performance measures.
Table 3: Hydroelectric Turbine Fault Detection Performance

Model | Accuracy Precision Recall F1-Score Notes
(%) (%) (%) (%)
LSTM | 96.8 96.3 97.2 96.7 Excellent for vibration anomalies
K- 90.5 89.7 91.2 90.4 Suitable for unsupervised anomaly
Means detection
ANN | 93.1 92.4 93.6 93.0 Slightly less effective for complex time-
series patterns

LSTM models were also able to effectively capture temporal patterns and early signs of vibration anomalies,
whereas K-Means clustering was able to identify abnormal operating patterns when there was no labelled data
available (Kusiak, 2018). ANN also had a good predictive capability but was a little bit poorer on complex
hysydroelectric system data.
Maintenance Optimization and Cost Analysis.
Maintenance schedules were also maximized and resources allocated efficiently by means of the predicted failure
times. The Al-based process minimized the amount of unwarranted inspections and downtimes, which led to cost
reductions in operations. The comparative analysis of the maintenance costs and downtime with regard to
preventive maintenance based on traditional methods and predictive maintenance based on artificial intelligence
is shown in Table 4.
Table 4: Maintenance Cost and Downtime Comparison

| System Type | Maintenance Strategy | Annual Cost (USD)

| Average Downtime (hours) |
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Wind Turbine | Preventive 120,000 180
Al-Predictive 85,000 95

PV System Preventive 50,000 120
Al-Predictive 32,000 65

Hydro Plant Preventive 100,000 150
Al-Predictive 70,000 80

The economic and operational benefits are demonstrated by the high reduction in the costs of maintenance and
the downtimes of the predictive maintenance model based on Al. In addition, a consistent power output rate,
longer equipment lifespan, and less harmful effects on the environment were achieved due to the timely fault
identification (Wang et al., 2020; Shin et al., 2021).

Interpretation

The results prove the fact that Al-based predictive maintenance may contribute to the increase of the reliability,
decrease the cost of operation, and make the maintenance of different renewable energy locations easier. Deep
learning models, namely, LSTM and CNN models are more useful in complex temporal and spatial patterns of
sensor data capture than the traditional supervised and unsupervised models. Maintenance schedule tools and
predictive insights are used as actionable recommendations to the operators to improve the performance of the
energy system and decision-making. The problems of data quality, model generalization and integration with
legacy systems remain very important to the problems of real-world deployment.

CONCLUSION AND RECOMMENDATIONS.

Predictive maintenance Al is a new revolution of enhancing the reliability and effectiveness of renewable energy
systems. It can be seen in the analysis that machine learning and deep learning-based models, including ANN,
SVM, Random Forest, CNN, and LSTM, can also predict equipment failures, anomalies, and optimize the
maintenance plan of wind turbines, solar PV arrays, and hydroelectric plants. Al-enabled predictive maintenance
can be used to reduce the number of downtimes, operating expenses, and energy output loss by a substantial
percentage, extend the life of equipment and streamline the overall work of the system (Lei et al., 2018; Kusiak,
2018).

The suggestions that can be put to the operators of industries and policy makers are as follows, first, to be capable
of making predictive modeling, a high quality sensor network with real-time data collection must be established.
Second, the choice of Al algorithms depends on the complexity of the system and the requirements of its operation,
and deep learning models are more appropriate in case of large datasets where it is necessary to consider the time-
series. Third, to enable the conversion of predictive insights into effective maintenance strategies, it is vital to
combine it with the existing energy management systems and decision-support tools. Fourth, it would be required
to pay attention to data quality, preprocessing and data model generalization to ensure high performance under
different working conditions. Finally, the implementation of Al in personnel and the promotion of the usage of
explainable Al models can encourage the confidence of the operator and help him/her adopt it.

Future work in this area must focus on hybrid Al models, combination with IoT and edge computing, real-time
adaptive maintenance systems, and better cybersecurity offerings. The predictive maintenance based on Al will
increase the reliability of renewable energy systems, reduce their operational costs, and optimize energy, which
will in turn fulfill the goal of sustainable energy and carbon footprint (Yang et al., 2019; Zhang et al., 2020).
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