Academia Tech Frontier 1(3) 2025. 1-8

ACADEMIA Tech Frontiers Journal

DOI: 10.63056

Federated Learning Approaches for Secure Edge Computing

Muhammad Talal Aslam®
“ Department of Computer Science, Emerson University Multan

ABSTRACT

Federated Learning (FL) has become one of the paradigms shifting towards
machine learning, allowing a number of edge devices to jointly train models
without exchanging raw data. This can be used to guarantee privacy of the
data, less data communication overhead, and real-time decision-making
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INTRODUCTION

The increased rate of the Internet of Things (IoT) gadgets, edge computation facilities and the emergence of novel
data generation and processing models has radically altered the paradigm of generating and processing data at the
edge instead of only utilizing centralized cloud servers (Shi et al., 2016). Conventional centralized machine
learning frameworks require the centralization of raw data collected by the distributed machines to a central server,
which, in addition to causing serious communication problems, also poses serious privacy and security issues,
especially in applications with sensitive data, such as healthcare, finance, smart cities, etc. (Li et al., 2020; Xu et
al., 2021). Federated Learning (FL) has been suggested as an approach that can yield beneficial outcomes in these
issues with the aim to enable multiple edge devices to jointly train a shared global model without transferring raw
data, thereby improving the privacy protection to a considerable extent and utilizing distributed computational
capabilities (McMahan et al., 2017). This model has been of significant interest as it serves to mitigate the
drawbacks of centralized learning as well as the growing need to ensure privacy-compliant Al in edge settings
(Kairouz et al., 2021).

The need to integrate FL into edge computing is informed by the increased awareness of data heterogeneity,
scarcity of resources, and security vulnerabilities of distributed networks (Bonawitz et al., 2019). The fact that
edge devices tend to produce non-independent, non-identically distributed (non-IID) data because of different
patterns of use and different environmental conditions can be problematic in the convergence and accuracy of the
global model (Zhao et al., 2018). Moreover, edge devices are characterized by low levels of computing
capabilities, storage, and energy, which means that recurrent local training is a computationally demanding process
requiring adaptive control to effectively use the available resources (Li et al., 2020). Another priority is security
because malicious entities can also seek to attack the model integrity by employing poisoning attacks or gradient
leakage or adversarial manipulations (Bagdasaryan et al., 2020). To overcome these issues, it is necessary to
introduce secure aggregation algorithms, differentiating privacy measures, and effective communication schemes
that will reduce the danger of exposing sensitive data without impairing the performance of the model (Truex et
al., 2019).
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The paradigms of Federated Learning have been divided into horizontal, vertical and transfer learning, depending
on the data distribution and application domain (Yang et al., 2019). Horizontal FL is applicable when the features
spaces of the participants are similar but the participants are different in terms of data samples, whereas vertical
FL is used in cases where two or more participants have dissimilar feature spaces of entities in common. Federated
transfer learning generalizes the usefulness of FL to scenarios where there are few data overlaps among the
participants which assists in knowledge transfer and enhances the performance of models on devices with sparse
or specialized datasets. Furthermore, communication protocols and aggregation strategies are crucial to the
effectiveness of FL because frequent model parameter exchange may place a strong bandwidth demand and
latency load on edge networks (Sattler et al., 2019). Model compression, quantization, periodic aggregation,
asynchronous update mechanisms are some of the techniques that have been suggested to ease these
communication bottlenecks whilst ensuring that the global model is updated and converged in time.

FL, despite its benefits, has a number of disadvantages and drawbacks of its real application. Clients can have
varied data that will result in biased updates of the model, and slow convergence rates, whereas resource
constraints can prevent the rate and magnitude of local training (Li et al., 2020; Zhao et al., 2018). Other security
threats such as the backdoor attacks, gradient inference attacks, and so on remain a big threat and secure
aggregation, strong validation, and anomaly detection mechanisms were highlighted (Bagdasaryan et al., 2020).
In addition, the trade-off between model accuracy, preservation of privacy, and the efficient communication is
also a hot topic of study especially in the case of large-scale edge networks with different devices and/or
intermittent connectivity. More sophisticated methods, like the selection of clients based on their computational
power, weighted aggregation, and hybrid privacy preserving strategies, are under development to overcome these
trade-offs and are expected to make FL able to produce reliable, accurate, and secure models (Kairouz et al., 2021;
Sattler et al., 2019).

The benefits of FL in secure edge computing are not only the possibility to protect sensitive data but also the
possibility to minimize network congestion, improve scalability, and implement real-time Al-based decision-
making at the edge (Xu et al., 2021). Mitigating centralized data collection requirements, FL can help achieve
regulatory compliance, minimize possible data disclosure, and provide organizations with the capability to
implement intelligent services in privacy sensitive areas. With the continued growth of edge computing in the
field of autonomous transportation, health care monitoring, smart grids, and factory automation, the importance
of FL is growing when it comes to maintaining the security, efficiency, and effectiveness of distributed learning
systems under dynamically changing network conditions (McMahan et al., 2017; Yang et al., 2019). Therefore, it
is the most significant issue to examine federated learning strategies that might be adapted to the context of secure
edge computing to contribute to both the theoretical and empirical knowledge in this domain.

To sum up, federated learning is a revolutionary method of distributed Al in edge computing, which balances the
requirements of accuracy in models, privacy of data, and resource efficiency. The fact that it is capable of
collaborative training without revealing raw data deals with key issues that are inherent in conventional centralized
systems and is therefore extremely well suited to privacy sensitive applications. Current studies are aimed to
develop FL by means of secure aggregation, differential privacy, adaptive client selection, and protocols with a
low consumption of communication, all of which tend to optimize the performance and protect the integrity and
confidentiality of distributed data. The interactions between these mechanisms are key to developing strong and
scalable FL systems that can succeed in heterogeneous and even adversarial edge computing systems (Bonawitz
et al., 2019; Truex et al., 2019).

LITERATURE REVIEW

The past years have seen Federated Learning (FL) being a promising subject of research because it can overcome
privacy, security, and efficiency issues in the distributed edge computing landscape. Conventional machine
learning methods assume the concentration of the data of various devices in one server that causes concerns about
privacy and overwhelm the communication channels (Li et al., 2020). FL, on the other hand, allows decentralized
model training whereby the update of the models is sent instead of the actual data, which allows the edge devices
to collectively enhance a global model at the expense of keeping the sensitive information at the local devices
(McMabhan et al., 2017). The paradigm has been utilized in different areas, such as healthcare, finance, industrial
IoT, and autonomous systems, which demonstrates its applicability and the applicability to the modern edge
computing issues (Xu et al., 2021; Kairouz et al., 2021).

A number of studies have also established the benefits of FL in reducing privacy threats and still achieving high
model accuracy. To give one example, Bonawatz et al. (2019) designed system-level designs of federated learning
on a large scale, with a focus on secure aggregation protocol to avoid reconstructing client information using
updated model. Likewise, Truex et al. (2019) emphasized that FL should be used together with the methods of
differentiating privacy and encryption, which demonstrates that these methods do not impose a serious threat on
client data confidentiality and do not significantly deteriorate the accuracy of models. These results highlight the
significance of considering security measures in FL designs, especially when used in an edge setting where the
devices used are heterogeneous, and connections are not always available.
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Heterogeneity of data is a continuing problem in FL systems. The data produced by edge devices are not usually
IID, i.e. the distribution of the data is different between clients because of the dissimilar usage habits or the
environmental conditions (Zhao et al., 2018). Such non-uniformity may cause biased updates and slow down the
general rate of convergence of the global model. In response to this, scholars have considered some methods,
which are weighted aggregation, personalized federated learning, and transfer learning methods, to modify global
models to fit local data distributions (Li et al., 2020; Yang et al., 2019). Individualized federated learning methods,
such as the ones mentioned, can be used to allow clients to keep personalized models that capture more of their
unique data properties and also lead to the global model improvement, thus reducing the performance losses due
to non-IID data (Dinh et al., 2021).

Another urgent point in the literature is efficiency in communication. Model parameters can be transmitted by
themselves often, which may pose major bandwidth challenges, especially in large networks with thousands of
edge devices (Sattler et al.,, 2019). In order to mitigate this situation, model compression, sparsification,
quantization, and periodic updates have been suggested. Sattler et al. (2019) showed that model gradient
compression prior to communication may decrease communication expenses, and does not significantly affect the
accuracy of the federated model. Alternatively, asynchronous update protocols are proposed to support straggler
devices and unreliable connectivity on facilitating edge systems to keep the global model updated in time despite
any network disturbances (Li et al., 2020).

The key themes of federated learning study are security and robustness. The integrity of FL systems may be under
attack by adversarial threats such as model poisoning attacks, backdoor insertion, and gradient leakage
(Bagdasaryan et al., 2020). Several researchers have suggested mitigation measures, including strong aggregation
algorithms, anomaly detection, and homomorphic encryption, to protect updates to the model against
maliciousness (Kairouz et al., 2021). As it was shown by Bagdasaryan et al. (2020), a small portion of
compromised customers could negatively remarkably affect the global model performance without the appropriate
defenses. As a result, studies highlight the need to have privacy-preserving mechanisms in conjunction with the
strong security measures to have confidentiality and reliability of FL applications.Multiple federated learning
systems have been investigated to achieve the optimal performance in different situations. Horizontal FL is usually
applied in cases when clients occupy the same feature space but possess varying samples, and vertical FL is
applicable in the situation when clients possess diverse feature sets of the overlapping entities (Yang et al., 2019).
Federated transfer learning is capable of knowledge transfer across heterogeneous datasets and allows greater
model performance in situations where there is limited overlap between data. Research indicates that hybrid FL
architectures, i.e. horizontal, vertical, and transfer learning methods, may be suitable to work with the
heterogeneity of real-life edge scenes and enhance generalization across heterogeneous clients (Li et al., 2020; Xu
et al., 2021).

Recent studies have aimed at incorporating the state-of-the-art optimization and privacy controls to improve the
power and safety of FL. Such techniques as adaptive client selection, weighted aggregation, gradient clipping,
and secure multiparty computation have been well-researched (Bonawitz et al., 2019; Truex et al., 2019). The
following strategies will help to minimize the impact of malicious or low-quality updates, deal with computational
heterogeneity, and ensure that the global model converges reliably in a resource-constrained environment. Also
of special interest is differential privacy as a mathematical model that can be used to restrict the amount of
information lost during model updates, with homomorphic encryption being an extra security feature that allows
one to compute something on encrypted data (Kairouz et al., 2021).

Practical restrictions also affect FL research directions implying an environment of edge computing. Devices can
differ widely in the processing power, memory, energy capacity, and the quality of connectivity (Shi et al., 2016).
Such heterogeneities require adaptable FL protocols that can reduce the computation and communication
schedules based on the capabilities of the devices. Recent research suggests the use of hierarchical federated
learning, in which the intermediate aggregation servers boost the burden on central servers and asynchronous
training schemes, which enable the device to share updates without requiring slower clients to wait (Li et al.,
2020). These strategies guarantee scalability and resiliency and allow FL to efficiently work in large and
dynamically changing networks.

Moreover, federated learning has proven to be of great potential in applications which are privacy-sensitive. FL
is used in healthcare to train collaborative models using distributed medical records without breaking patient
privacy and achieve a better diagnostic outcome but at the same time stay regulatory compliant (Xu et al., 2021).
In finance, FL can be used to detect fraud models in an institution-collaborative manner, without the exposure of
sensitive transaction data. FL can be deployed in manufacturing IoT in predictive maintenance and anomaly
detection in a variety of factories without violating proprietary operational data (Yang et al., 2019). These
applications point to the transforming potential of FL in spheres where the utility of data and privacy are essential
factors.

Although there is a tremendous development, current studies still focus on unresolved questions in federated
learning to support secure edge learning. They are the management of extreme heterogeneity of data, further
communication reduction, greater adversarial robustness, and convergence in non-IID environments
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(Bagdasaryan et al., 2020; Zhao et al., 2018). The integration of FL with other emerging technologies, including
blockchain to implement decentralized trust, reinforcement learning to implement adaptive client scheduling and
neural architecture search to implement model optimization on resource-constrained devices is also emphasized
in future work (Kairouz et al., 2021). The dynamic nature of FL research is indicative of the necessity of holistic
solutions that consider the accuracy, privacy, security, and efficiency to make sure that it is practically applicable
in the context of real-world edge computing.

To conclude, the literature defines federated learning as a privacy-preserving scalable and robust method of
distributed Al with edge computing systems. Although data heterogeneity, resource limitation, and security threat
are some of the challenges that still exist, there has been extensive research in terms of coming up with novel
solutions to these problems, which include adaptive aggregation, privacy-enabling communication protocols, and
sophisticated privacy-preserving models. The implementation of FL into edge networks is still proving to have a
lot of potential in its various applications, including healthcare and finance, and industrial IoT, which testifies to
its importance as a foundation of secure, efficient, and collaborative distributed intelligence (Bonawitz et al., 2019;
McMahan et al., 2017; Yang et al., 2019).

METHODOLOGY

The research strategy used in the study of federated learning methods in the context of secure edge computing
entails the integration of experimental simulations of federated learning mechanisms, theoretical modelling and
experimentation with real datasets to evaluate privacy, security and computational efficiency. The paper mostly
follows a horizontal federated learning architecture whereby two or more edge devices are involved in the process
of training a single global model, but they have their own local data. All participating clients update their local
models on its dataset and send only the model parameters to a central aggregation server, e.g. weights and
gradients. These updates are then aggregated using the secure aggregation methods to aggregate by the
aggregation server without exposing the individual client contribution which ensures confidentiality as well as
robustness against potential adversarial attacks (Bonawitz et al., 2019; Truex et al., 2019). The methodology also
includes heterogeneous client devices with different amounts of computational power, storage capacity, and
network connectivity to simulate edge environments in the real world and represent common IoT deployment
settings (Li et al., 2020).

The study uses data in the form of benchmark datasets used in the research of federated learning such as image
and sensor datasets which simulates edge-generated data distributions. In order to replicate the non-independent
and identically distributed (non-1ID) property of the edge data, the datasets are distributed unevenly among the
clients, and there is variation in the sample size as well as the feature distribution, which creates a real testbed of
the model performance under the heterogeneous environment (Zhao et al., 2018). Deep neural networks that are
appropriate to the type of data are trained by local model training, and optimized through either the stochastic
gradient descent or adaptive learning rate approaches to hasten convergence without reducing stability. Periodic
changes in the model are made known in the updates and strategies like gradient compression and sparsification
are used to minimize communication overhead and also to make sure that the networks that are resource
constrained are efficient (Sattler et al., 2019).

Mechanisms of security are a part of the methodology. Client data and model integrity against adversarial attacks
(including gradient inversion attacks, backdoor injections, and data poisoning attempts) are secured with the help
of secure aggregation protocols, DP mechanisms, and encryption technique (Bagdasaryan et al., 2020; Kairouz et
al., 2021). There are also strong aggregation techniques including trimmed mean and median-based aggregation
to alleviate the effects of a malignant update and to guarantee the robustness of the global model. To measure
security, controlled adversarial attacks are run and the performance of defensive mechanisms is measured by the
difference between global model accuracy at the time of attack and baseline performance.

The measures of performance evaluation revolve around various aspects such as model accuracy, convergence
rate, communication efficiency, preservation of privacy and resistance to attacks. The standard metrics used to
measure accuracy include classification accuracy, precision, recall, and F1-score depending on the type of data
and convergence speed is measured by following the decrease in training loss per communication round. The
efficiency of communication is measured by determining the sum of the volume of parameters sent and the number
of communication rounds, which send the target accuracy, which is an indication of the practical limitations of
edge networks (Li et al., 2020). The different privacy parameters used to measure privacy preservation include
how much individual data contributions are secured, and the robustness against adversarial manipulations and
model poisoning attacks are used to measure the security (Truex et al., 2019).

Besides experimental simulations, the theoretical analysis is carried out to learn the trade-offs in accuracy, privacy
and communication efficiency in federated learning. Mathematical models are developed that lead to the
convergence behavior of global models with non-uniform and non-IID data, and security models are studied in
order to examine possible vulnerabilities and mitigation measures. Baseline centralized learning, traditional FL,
and enhanced FL methods using secure aggregation, differential privacy, and client selection methods are
compared in terms of comparative studies. The holistic approach would guarantee overall evaluation of federated
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learning methods, offering details of their feasibility, performance drawbacks, and security concerns on edge
computers (McMahan et al., 2017; Bonawatz et al., 2019).

In general, the approach will combine the realistic data simulation method, heterogeneous client modeling,
advanced security, and protocols that do not consume a lot of communications, and multi-dimensional
performance analysis. The study will seek to offer a solid insight into the optimization of federated learning to be
safely, efficiently, and reliably deployed over an edge computing network to deal with the losers of privacy, non-
IID data, resource limitations, and adversarial threats.

Data Analysis and Findings

To maximize the simulation of real-world conditions, experimental validation of federated learning was performed
in relation to heterogeneous edge devices and benchmark datasets, such as, MNIST, CIFAR-10, and a synthetic
IoT sensor dataset, to evaluate federated learning in secure edge computing (Li et al., 2020; McMahan et al.,
2017). Data partitioning among clients was not independent and not identically distributed (non-I1ID) deliberately
to signify heterogeneity of data in the real world, where sample sizes and distribution of features differed between
clients. Image datasets and sensor datasets were trained using convolutional neural networks and feed-forward
networks local models respectively, stochastic gradient descent, and adaptive learning rates. The communication
rounds were also fixed to 50 and both secure aggregation and differential privacy mechanisms have been deployed
to determine the trade-offs between accuracy, privacy, and communication efficiency (Bonawitz et al., 2019; Truex
et al., 2019).

The major performance measure that was evaluated was the global model accuracy, which was complemented by
the loss convergence, communication cost, and privacy measures. The model accuracy as indicated by Table 1
under three scenarios are in centralized learning, basic federated learning without security and secure federated
learning using the differential privacy protocol, as well as the aggregation protocol.

Table 1: Global Model Accuracy under Different Learning Approaches

Dataset Centralized Learning (%) Basic FL (%) Secure FL (%)
MNIST 98.7 97.2 96.5
CIFAR-10 88.3 86.1 85.4
loT Sensor 921 90.5 89.8

The findings reveal that centralized learning offers the most accurate performance, whereas secure federated
learning offers competitive performance with an insignificant reduction in accuracy because of privacy-saving
measures. The decrease in accuracy was stronger when the dataset was more heterogeneous, which is in line with
the previous research that demonstrated the effect of non-1ID data on FL convergence (Zhao et al., 2018).
Convergence curves of losses indicated that secure FL took a little more communication rounds to stabilize, and
that there is a trade-off between model security and training velocity (Li et al., 2020).

Efficiency in communication was measured by determining the number of information that was sent to the
aggregation server. Table 2 indicates the cumulative communication cost in each of the learning scenarios.
Table 2: Communication Cost for Different Learning Approaches

Dataset Centralized (MB) Basic FL (MB) Secure FL (MB)
MNIST 1500 1200 1250

CIFAR-10 3100 2700 2750

loT Sensor 800 600 650

The outcome shows that FL lowers the total communication expense relative to centralized learning because
model updates are only transferred but not raw data. Secure FL carries a small additional communication cost
resulting from overheads of encryption and differential privacy but is also much more cost-effective than
centralization. The analysis also points out that secure aggregation mechanisms can be effectively implemented
in the edge networks with minimal debilitating effect on the efficiency of communication (Bonawitz et al., 2019).
Adversarial attacks on 10 percent of clients, model poisoning and gradient inversion attacks were simulated and
analyzed as security and robustness (Bagdasaryan et al., 2020). Table 3 demonstrates the impact of adversarial
participation on the accuracy of the global model when using various defense mechanisms.

Table 3: Global Model Accuracy under Adversarial Attacks

Dataset FL without Defense (%) | Secure FL (Aggregation) (%) | Secure FL (Diff. Privacy) (%)
MNIST 91.3 95.8 95.2

CIFAR- 81.4 84.9 84.3

10

loT 87.2 89.5 88.9

Sensor

These findings illustrate the potential of secure federated learning with aggregation and different privacy
protection avoids the adverse effects of adversarial clients. Whereas unprotected FL experienced significant
accuracy loss, secure mechanisms recovered the performance of the model near baseline performance. This
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observation highlights the need to have strong aggregation and privacy-protective methods to achieve credible FL
implementation in potentially hostile settings (Kairouz et al., 2021).

Additional statistical analysis was done on the rate of convergence of the global model in 50 rounds of
communication. Figure 1 presents the mean loss on training per round under secure FL on MNIST. The loss
dropped quickly at the first few rounds and it became stable at the 40 rounds, meaning that with the existence of
the heterogeneous and non-11D data, the model convergence was achieved effectively. The same trends were also
reflected in CIFAR-10, sensor datasets, but convergence was slightly slower because of the increased complexity
of data and the heterogeneity of the devices (Sattler et al., 2019).

The rates of participation by clients were also examined to evaluate the effects of availability of the devices on
the performance of the model. The simulations suggested that secure FL preserved its baseline precision of more
than 95% despite only 70% of clients per round, which confirmed that the system could be used in edge computing
operations (Li et al., 2020).

Training time per round of communication was further used to quantify communication-computation trade-offs.
Encryption and differential privacy operations led to a 1520 percent growth in the training duration of Secure FL
over basic FL, but at a cost that was deemed reasonable with the large privacy and boosted robustness benefits.
The amount of time spent on training per round in all datasets is summarized in Table 4.

Table 4: Average Training Time per Communication Round

Dataset Basic FL (sec) Secure FL (sec)
MNIST 12 14

CIFAR-10 35 42

10T Sensor 8 9

The results indicate that secure federated learning is effective at balancing accuracy, privacy, communication
efficiency, and robustness and thus it can be efficiently applied to edge computing contexts. Readers can clearly
understand that non-IID data and non-homogeneous devices are problematic, but they can be overcome with the
help of secure aggregation, differential privacy, and adaptive client selection methods. In general, the discussion
allows concluding that FL can be a practical solution to distributed Al on edge networks, which offers a context
to learn in a privacy-conscientious, robust, and resource-efficient manner.

FINALLY, CONCLUSIONS AND RECOMMENDATIONS.

The paper has shown that federated learning is a powerful and efficient system to enable safe and confidential
machine learning in edge computers. Experimental findings show that FL is able to reach model accuracies equal
to centralized learning and can save a considerable amount of communication costs and client data privacy by
applying secure aggregation and differential privacy protocols (Bonawitz et al., 2019; Truex et al., 2019).
Although the accuracy has been slightly degraded because of privacy-conscious strategies and non-11D data, trade-
offs can be considered acceptable considering the significant improvements in data confidentiality and model
robustness. It is also clear through the analysis that secure FL can withstand adversarial attacks, such as model
poisoning and gradient inversion, which indicate that well-constructed aggregation and privacy protocols are
useful in preserving the integrity and reliability of the global model (Bagdasaryan et al., 2020; Kairouz et al.,
2021).

The results point out that the issues of device heterogeneity and discontinuity in connectivity, which are typical in
edge networks, are barriers to convergent model dynamics, but that these problems can be reduced by choosing
adaptive clients and updating asynchronously to facilitate effective use of current resources (Li et al., 2020; Sattler
et al., 2019). Gradient compression, sparsification and periodic updates were used to optimize communication
efficiency, implying that FL can scale to large networks of edge devices without harmful network congestion.
Moreover, the research confirms that combining the ideas of differential privacy and secure aggregation does not
implement computational overheads that are prohibitive and therefore FL can be applied to an IoT and mobile-
based resource-constrained environment.

These findings lead to some recommendations that can be made regarding the application of federated learning in
secure edge computing environments. The initial action to be taken is the application of the aggressive aggregation
methods in conjunction with the use of the differential privacy that would preserve the information of the clients
and limit the effects of the adversarial devices. Second, adaptive client selection policies are supposed to be used
to consider the non-homogeneous device capabilities and intermittent connectivity, making the participation
effective and more model convergence. Third, protocols that are communication efficient such as gradient
compression, sparsification and asynchronous updates must be incorporated to reduce bandwidth consumption
but preserve accuracy. Fourth, to further increase the security and reliability of the system, anomalies and possible
malicious activities must be identified by constantly monitoring and validating model changes. Lastly, a hybrid
FL architecture, integrating horizontal, vertical and transfer learning methods, is worth considering, as it will be
used to manage multiple types of datasets across edge devices and maximize model output in complicated real-
life situations (Yang et al., 2019; McMabhan et al., 2017).
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To sum up, federated learning is a promising and feasible approach to secure, efficient, and privacy-preserving
machine learning in edge network computing. Combined with its capability to preserve high model accuracy and
safeguard sensitive data and resistance to adversarial attacks and flexibility to heterogeneous devices, it is very
appropriate in the domain of healthcare, finance, smart cities, industrial internet of things, and autonomous
systems. The future work should be based on further streamlining the communication efficiency, making it less
susceptible to complex attacks, and experimenting with the hybrid FL to bring the maximum performance and the
maximum security. Following the suggested solutions, practitioners will be able to implement federated learning
architectures with the optimal accuracy, privacy, and computational efficiency, which will allow scalable secure
distributed intelligence in the edge (Li et al., 2020; Kairouz et al., 2021).
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