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ABSTRACT

Forest fires are a common and devastating natural disaster that causes widespread damage
to forest vegetation and poses significant threats to ecosystems. Detecting and monitoring forest fires
are crucial for mitigating their impact on the environment and human communities. This research
paper focuses on remotely monitoring the change detection in the Sherani Balochistan Pine Nut
Forest, which experienced extensive fires, resulting in substantial damage to the Pine Nut crop. Being
the world’s largest Pine Nut crop, this event has significant implications for global nut crop
production. The proposed solution utilizes remote sensing techniques to detect major changes in the
Pine Nut Forest, with images depicting the Sherani forest fire collected from Landsat 9 satellite
imagery. It involves actual fire detection, monitoring of damaged areas, and risk hazard analysis. The
research employs temporal analysis, which examines the burned area at different time series to
observe changes in the geographic area and potential loss of forest cover. Satellite imagery is
obtained through the GEE for geospatial analysis, using Landsat data with a spatial resolution of 30
meters for improved comparison and collation of semi-centennial forest data. The approach involves
the calculation of indices for the Pine Nut Forest using the NBR and dNBR. These indices help
identify the extent of affected land and the severity of the burn. By utilizing this novel approach, the
forest department can effectively detect changes in land and climate, enabling better decision-making
based on the collected data. Overall, this research contributes to improved forest fire management
and conservation efforts.

Keywords: Google Earth Engine (GEE), Normalized Burn Ratio (NBR), Differenced Normalized Burn
Ratio (dNBR)
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1. INTRODUCTION

A profound natural geo-hazard, forest fires hold the potential to become uncontrollable if timely
action is not taken. These fires exhibit a remarkable capacity for rapid dissemination, swiftly
engulfing vast expanses of terrain and inflicting extensive damage upon ecosystems. The ensuing
consequences are characterized by significant losses in vegetation, leading to irreparable devastation
of crops and trees endemic to the affected forests (Han et al., 2017). The forest fire engenders a
significant extent of destruction across a wide coverage area, extending beyond mere vegetation
damage. Its impact reverberates beyond the ecological realm, affecting nearby communities, rescue
teams dedicated to forest preservation, and a myriad of animals residing within the ecosystem. The
confluence of dense smoke and prolonged fire duration leads to the demise of avian species.
Moreover, the sustained blaze for several days has multifaceted repercussions, including implications
for neighboring residences and inhabitants near the forest (Petkovic et al., 2020). The annual forest
fires reach a high percentage which disturbs most of the earth’s forest area. Forest fires occur in most
places and mostly happen annually (Schroeder et al., 2014). It is the most common type of natural
disaster happening in some specific places every year.

Remote Sensing’s versatile, scalable, and adaptable nature has ushered advancements across diverse
disciplines. It stands as a pivotal factor driving progress in various domains (Shimabukuro & Smith,
1991). Remote sensing enables comprehensive observations across multiple sectors, including risk
management, forest monitoring, and land/cover area surveillance, through the analysis of satellite
images (Arai et al., 2019). Remote sensing encompasses three primary modalities: ground-level data
collection from tall towers, aerial data acquisition via UAVs (Unmanned Aerial Vehicles) and
helicopters, and satellite imagery sourced from satellites such as MODIS, Sentinel, and Landsat. This
research focuses on utilizing Landsat imagery to gather information about the BalochistanShirani
Pine-nut Forest.

Utilizing Google Earth Engine (GEE) tools, satellite imagery becomes a potent resource for
monitoring diverse regions. Specifically, this research employs GEE to oversee the Koh-e-Sulaiman
region’s Baluchistan Shirani area, which boasts the world’s largest Pine-Nut Forest. At the outset of
2022, this expanse experienced a devastating fire that endured for nearly two weeks, resulting in
substantial forest destruction. This forest is currently susceptible to extensive fires, inflicting
widespread damage upon the Pine-nut Forest and compromising nut crop yields. This incurs a
profound impact on global nut crop production, signifying a substantial loss in Pine Nut resources on
a global scale (Szpakowski& Jensen, 2019). In 2022, the forest fires in the Pine Nut Shirani region
resulted in a substantial 40% damage to the global Pine nut crop. The primary impact of these fires is
inflicted upon both the forest vegetation and the crops it sustains. Employing the Landsat approach
facilitated by the Google Earth Engine (GEE) tool, satellite images will be harnessed for fire analysis.
GEE’s geospatial analysis of satellite imagery aids in detecting areas of loss, as it effectively maps the
burned regions. The integration of Landsat data enables efficient detection of the burned areas,
contributing to accurate assessment (Gargiulo et al., 2021).

Landsat provides satellite images of years which help in the collection of datasets and more data
provide a better comparison of the degradation of the forest (Babu&Vanama, 2020). Landsat offers
superior resolution, utilizing the Operational Land Imager (OLI) data to deliver optimal satellite
imagery at a resolution of 30 meters. When juxtaposed with alternatives such as MODIS and VIIRS,
Landsat consistently yields more favorable results, particularly in forest fire detection, owing to its
finer resolution and enhanced comparative performance (Suresh &Vanama, 2018; Bin et al., 2013).
Landsat, synergistically paired with the Google Earth Engine (GEE), furnishes Shirani Baluchistan’s
satellite images. Leveraging this imagery, pre-fire and post-fire data can be analyzed to discern

https://academia.edu.pk/ IDOI: 10.63056/ACAD.004.01.0072| Page 292



https://academia.edu.pk/

ACADEMIA International Journal for Social Sciences
Volume 4, Issue 1, 2025 ISSN-L (Online): 3006-6638

transformations within the Pine-Nut Forest. This comparative analysis effectively identifies damaged
regions, establishing a threshold for change detection. It yields essential insights into the extent of
fire-induced expansion and destruction within the Shiraniforest area.

Initiating in Baluchistan, the fire’s uncontrolled progression reached parts of the Khyber Pakhtunkhwa
province, exacerbating the situation. Employing the temporal data analysis facilitated by the Landsat
approach, calculated indices enable the detection of changes within the Pine Forest. Furthermore,
these indices facilitate the straightforward identification of burn severity, providing a comprehensive
understanding of the fire’s impact (Wang et al., 2010). Utilizing appropriate indices, particularly
through the Landsat approach, change detection within the Pine Forest is facilitated. The application
of indices such as the Normalized Burn Ratio (NBR) and Differenced Normalized Burn Ratio (ANBR)
streamlines the identification of burn severity and changes within the pine forest. This innovative
method empowers the forest department to effectively discern shifts in both land and climate
conditions, capitalizing on the amassed data to draw informed conclusions. The inherent capability of
our approach extends to the straightforward identification of diverse changes, encompassing
alterations in land cover and climate dynamics.

2. RELATED WORK

Forest fires, as natural geo-hazards, epitomize uncontrolled infernos that ravage without restraint,
leaving extensive devastation in their wake. These uncontained fires wreak havoc, exacting colossal
losses upon the impacted regions. The rampant nature of these fires precipitates not only substantial
forest damage but also impinges on crops, local inhabitants, and their dwellings. This paper delves
into methods to mitigate and forestall forest fires, underscoring the critical need for proactive
measures to avert further catastrophe (Petkovic et al., 2020). Remote sensing plays a pivotal role
across various domains due to its ability to provide precise and comprehensive observations from a
distance. Its significance is particularly pronounced in managing diverse fields. The application of
remote sensing encompasses a range of critical functions, including risk mitigation, forest surveillance
utilizing remote sensor methodologies, and continuous monitoring of both forested and terrestrial
regions. This research focuses on the utilization of Google Earth Engine (GEE) to facilitate forest
monitoring. Employing the Sentinel-1 approach, this study aims to amass pertinent data essential for
achieving these objectives (Gargiulo et al., 2021). This study focuses on analyzing a five-year dataset
spanning from 2015 to 2020. The primary objective is to perform a comparative analysis of yearly
data to detect changes, particularly concentrating on areas affected by fire-related incidents. By
utilizing time series data, the research aims to visually depict alterations in the Pine Forest,
showcasing both its forested expanse and the extent of degradation caused by fire-induced damage.
The investigation primarily hinges on temporal data analysis to meticulously assess the outcomes of
the comparative monitoring efforts.

The research adopts a temporal analysis approach to facilitate a comprehensive data comparison. This
endeavor involves employing satellite imagery from both Sentinel-2 and Landsat-8 platforms within
the Google Earth Engine (GEE) framework. The primary objective revolves around mapping the fire-
affected regions across Australia and subsequently conducting a meticulous comparative assessment
between the data derived from Sentinel-2 and Landsat-8. A noteworthy finding emerges from the
comparison: the satellite images acquired from Sentinel-2 outshine those from Landsat-8 in terms of
quality. This superiority is attributed to Sentinel-2’s finer resolution, which significantly enhances the
clarity of the imagery. Through the integration of Sentinel-2 imagery within the GEE platform, a more
distinct depiction of the burned areas is achieved, enabling a more accurate identification of the fire-
ravaged regions (Babu&Vanama, 2020).

The grasslands of Africa span a vast expanse and hold immense significance as a primary source of
sustenance and habitat for various animal species. Preserving the grasslands, particularly in South
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Africa, takes on heightened importance. Notably, the grassy regions in elevated or steep terrains are
particularly vulnerable to transformation due to significant environmental shifts. These alterations
could stem from climate variations, geological hazards, or even forest fires. Safeguarding these areas
assumes paramount importance.

This study adopts a remote sensing methodology, employing both the Landsat-8 and Sentinel-2
platforms, to address these concerns. The objective is to compare the efficacy of these techniques in
assessing the grasslands before and after fire incidents, consequently facilitating change detection
analysis. Through this comparative approach, the research aims to glean insights into the effectiveness
of each technique in capturing the alterations wrought by such events. The outcomes reveal that both
the Landsat-8 and Sentinel-2 approaches yield robust results in identifying and delineating fire-
affected areas. These techniques play a pivotal role in accurately pinpointing the burned regions,
providing invaluable information to inform conservation efforts and management strategies (Semela
et al., 2020).

3. METHODS AND MATERIALS
3.1 Study area

Sherani District spans an area of 4,310 square kilometers(PBS, 2024). It encompasses 1 Tehsil and 7
Union Councils. The focal study area of this research is SheraniBalochistan, situated at a latitude of
31°17°14 North and longitude of 70°2°28 East within the province of Balochistan. Sharing its eastern
borders with South Waziristan, the district is positioned to the northeast of Quetta City, the provincial
capital of Balochistan. Musakhail lies to the south, with Zhob District bordering the west. The district
is characterized by its mountainous terrain within the Sulaiman Range with an elevation ranging from
678 to 3,356 meters.Geographically, Sherani lies approximately 325 km northeast of Quetta, the
provincial capital of Balochistan. The total population of the district is 191,687 with an average
household size of 5.31 and a population density of 44.47 people/km? (PBS, 2024). The total forest
area within Sherani district spans 6,277 hectares.Zhob attained district status in 2006, followed by the
subsequent division of Sherani from Zhob. The name derives from the Sheranitribe, a prominent local
community in northeasternBalochistan. Shin Bazai stands as a notable town within the vicinity, while
the district headquarters is situated in” StanoRaaghah” town. The district’s topography predominantly
comprises towering mountains adorned with valuable” Chalghoza” trees, a source of both income and
local pride. The local economy primarily relies on agriculture and livestock.
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Figure 1. The geographic extent of Pakistan (a), Balochistan (b), and Sherani District (c).
3.2 Methods

In this segment, we provide an overview of Landsat and its application to the specified target site for
our proposed topic using Google Earth Engine (GEE) tools (Izquierdo-Verdiguier et al., 2021). The
detailed methodological workflow of the present study is depicted in Figure 2.
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Figure 2. The detailed methodological workflow of the present study.
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3.2.1 Landsat Overview

Landsat initially launched on July 23, 1972, has consistently provided aerial satellite images,
accumulating data over nearly four decades. This uninterrupted Landsat dataset equips land managers
and policymakers with vital information for informed decisions regarding natural resources and the
environment, capturing space-based photographs of Earth’s land surface. By 2022, nine Landsat
satellites had been launched, marking their significance in remote sensing (Young et al., 2017). These
remote sensing platforms amass extensive collections of satellite imagery, including visual and
climate data, and were chosen for this thesis due to the unique 20-year dataset available, allowing for
species distribution estimation and the identification of natural and human-induced changes on a
larger scale. The diverse spectral bands of Landsat satellites find applications spanning ecology to
geopolitics, with their continuous time series extending from 1972 to the present and a promising
future with Landsat-9 (Banskota et al., 2014). This research section employed data from Landsat 9 to
facilitate comprehensive analysis.

3.2.2. Landsat Data

The Landsat 9 satellite was utilized to collect images for the study area in 2022, providing a single-
year dataset with images taken at a 30-meter resolution. Landsat 8 data accessibility extends from
October 2021 to the present (Hair et al., 2018). To access the Landsat 8 dataset, a snippet of the
Landsat 8 Earth Engine code must be incorporated into the JavaScript coding. Each Landsat dataset
snippet is unique and specific to the satellite used. Landsat 9 features multiple bands, including SR B4
(RED), SR B3 (GREEN), and SR B2 (BLUE). Additionally, SR 10 is designated for surface
temperature analysis

3.3 Pre-Processing

In the Pre-processing section, we delve into the initial stages of refining data. This segment
comprehensively addresses the two pivotal elements: Cloud Cover and Striped Images.

3.3.1 Cloud Cover

In Landsat imagery, it is crucial to establish a specific threshold for Cloud Cover, ensuring it remains
below a predetermined value. This is imperative to guarantee the accurate processing of the acquired
images. In the designated study area, the utilization of Landsat satellite imagery is a pivotal step. Once
the imagery undergoes initial filtration, it is imperative that the images subsequently undergo a Cloud
Cover assessment. In this study area, the acceptable Cloud Cover limit is set at 15%. Exceeding this
threshold leads to compromised image processing accuracy, resulting in distorted outcomes.

3.3.2 Striped Images

During the pre-processing phase of the study area, the Landsat 7 satellite images exhibit a striped
pattern, stemming from a malfunction in Landsat 7’s Scan Line Corrector on May 31, 2003. Through
the implementation of various lines of code, these stripes can be effectively rectified, restoring the
images to their original state. This challenge represents the primary limitation of Landsat 7 imagery.
All images captured by Landsat 7 between 2003 and 2013 possess this striped appearance, which can
be remedied by applying a specific corrective code, resulting in the restoration of the original image
(El Fellah et al., 2016). Once this restoration is achieved, further processing can be conducted on the
unblemished image. Notably, some data from the 2005 timeframe might still exhibit striped patterns
and gaps due to the Scanner Row Prediction Anomaly associated with Landsat 7.
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3.4 Indices

Spectral indices are essential for reducing brightness distortions like shadows and clouds while
highlighting subtle spectral variations. They rely on the difference between two bands, averaged by
their sum. These indices use a mathematical equation with 'n’ integers, corresponding to spectral
bands, to determine the index value for each pixel. In this study, the Normalized Burn Ratio (NBR)
and Differenced Normalized Burn Ratio (AINBR) are used. NBR assesses burn area, while dNBR
gauges severity. Using Landsat 9’s 30-meter resolution imagery, captured pre- and post-fire, and
Google Earth Engine, NBR values are compared for change detection in the Sherani district. This
offers insights into fire impact on vegetation health and severity. In this study area, two different
indices are applied to the forest fire in the Sherani district. The indices are as below:

3.4.1 Normalized Burn Ratio (NBR)

The Normalized Burn Ratio (NBR) pinpoints fire-affected areas and assesses burn severity. In the
Sherani study, NBR reveals the burned land’s extent and severity. Landsat 9 pro- vides relevant
imagery, captured between May 8 and May 24, 2022. Leveraging Google Earth Engine (GEE),
images are filtered and subjected to pre- and post-fire dates. NBR formula, applied when both dates
are input, compares images for change detection. This process highlights burn-induced alterations.
Filtered imagery is processed using the NBR formula for visualizing changes. The Normalized Burn
Ratio (NBR) is calculated using the equation (1):

=—

The Normalized Burn Ratio (NBR) formula is calculated as (SR B5 - SR B7) / (SR B5 + SR B7),
where SR BS5 represents the Near Infrared band (NIR) and SR B7 represents the Short- wave Infrared
band (SWIR). These band assignments vary among Landsat satellites. In later versions like Landsat 8
and 9, SR BS is designated as Near Infrared (NIR), and SR B7 is designated as Short-wave Infrared
(SWIR). This formula effectively captures spectral distinctions for accurate burn area assessment
(Celik, 2018).

Figure 3. Detecting Changes with Normalized Burn Ratio (NBR)
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3.4.2 Differenced Normalized Burn Ratio (ANBR)

The Differenced Normalized Burn Ratio (ANBR) is utilized to identify fire-affected areas and quantify
burn severity. For assessing the extensive impact of burns, methods like dNBR are highly effective. In
the study of the Sherani district, ANBR is applied to visualize burned regions and assess the severity
of the burns. Landsat 9 satellite imagery acquired between May 8 and May 24, 2022, through Google
Earth Engine (GEE), supports this analysis.

In this process, NBR values obtained from both Pre-fire and Post-Fire dates are subjected to filtration
using the dNBR formula. This calculation indicates the severity of the burned land. The processed
imagery, post dNBR formula, serves to visualize changes in the affected area (Miller and Thode,
2007). The formula for ANBR is as follows (2):

dNBR:NBRPreFire_NBRPostFire(z)

The Differenced Normalized Burn Ratio (ANBR) is derived by subtracting the pre-fire Normalized
Burn Ratio (NBR) from the post-fire NBR. This mathematical process yields the desired outcomes.
Our computation of dNBR is achieved by analyzing the disparity between initial NBR imagery. We
sought to evaluate NBR’s effectiveness by employing this method-subtracting pre-fire from post-fire
imagery. Remarkably, dNBR accentuates changes between NBR images, effectively highlighting fire
presence. The computation involves filtering NBR images based on specific dNBR ranges.
Noteworthy dNBR ranges include:

The initial two severity categories pertain to areas where fire-induced productivity increase is
observed, specifically in grassy regions marked by strongly negative dNBR values, indicating
elevated post-fire productivity (Figure 4). The bulk of non-burnt pixels is situated around the zero
mark on the chart. The subsequent four levels encompass more extensively burned regions with
notably positive dNBR values, often indicating recent burn activity.

S.no Severity Level Map Legend dNBR Range
1 Enhanced regrowth, high h -0.5t0-0.251
2 Enhanced regrowth, low -0.25t0-0.101
3 Non-burnt -0.110 0.099
4 Low severity 0.1t00.269
5 Moderate-low severity ' 0.27 t0 0.439
b Moderate-high severity 0.44 t0 0.659
f High severity _ 0.66to 1.3

Figure 4. Differenced Normalized Burn Ratio (ANBR) Spectrum with Severity Levels and Map
Legend

3.4.3 dNBR Change Detection Analysis

The process involves segmenting the Pre-fire NBR from the Post-fire NBR, each traversing specific
ranges that correspond to distinct colors. These colors signify the intensity of burn within specific
areas as detected by dNBR’s change analysis. The ranges are numerically defined within the code,
ensuring precision across the entire study area. Change detection hinges on pixel-by-pixel comparison
between Post-fire and Pre-fire pixels, carried out through 7 ranges, each associated with a unique
color to visually represent the extent of change. This method is applied to the Sherani District,
exemplifying change detection within a well-defined range of values. The specifics of Sherani’s
Change Detection are outlined below in Figure 5.
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Figure 5.dNBR Change Detection Mapping Through dNBR Ranges
3.4.4 Change Detection Analysis

The process involves evaluating changes across various dNBR ranges. Every pixel is juxtaposed with
the pre-fire state, generating a pixel-based visualization of the outcome. This approach yields results
depicting pixel classes, corresponding hectares, and the total fire-affected area in hectares. The initial”
Enhanced Regrowth” category indicates post-fire regrowth levels: high, low, or unburned, providing
insights into the ecological response after the fire event. Subsequently, the last four categories present
actual fire-related outcomes, capturing the severity and extent of fire impact.

The study area table, a pivotal component of this assessment, provides a comprehensive overview of
the recorded data. It highlights the distribution of pixels across these distinct categories, enabling a
quantitative understanding of the changes observed due to the forest fire. This detailed presentation
facilitates both qualitative interpretation and quantitative analysis, fostering a deeper comprehension
of the ecological dynamics in the aftermath of the fire event. The study area table is presented in
Figure 6.

S O I

Enhanced Regrowth, High

2 Enhanced Regrowth, Low 5497 494.73 5497
3 Unburned 49222 4429.98 1.98
4 Low Severity 1218925 108703.25 48.96
5 Moderate-low Severity 1212311 109107.99 48.69
6 Moderate-high Severity 3451 310.59 0.14
7 High Severity 03 0.27 0

Figure 6. Table Showing Results of Change Detection

https://academia.edu.pk/ [DOI: 10.63056/ACAD.004.01.0072| Page 299



https://academia.edu.pk/

ACADEMIA International Journal for Social Sciences
Volume 4, Issue 1, 2025 ISSN-L (Online): 3006-6638

3.4.5 Time Series Analysis

The scatter chart displays the Normalized Burn Ratio (NBR) values across different dates in May,
coinciding with instances of fire occurrence. The chart effectively delineates the specified dates and is
enhanced with a trendline that accentuates the Change Detection pattern. The chart is presented below:

Sherani District NBR Time Series Analysis

—+— SR_B3
—— SR_B4
15,500
15,000
14,500 . S
\\
14,000 . May 24, 2022
- i . SR_B4: 13,477.1563
13500 =—m—— | L I
13,000 ‘“'\ki_f_,d_f-;f‘""*-‘l‘ -
ool e " 5 R o //"
= e g 4
12,500 == L] S

12,000
22 23 24 25 26 27 28 29 May2022 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 7.NBR-Time Series Analysis Depicting Forest Fire and Change Detection Trend
3.5 Accuracy

This results section presents both the overall accuracy and the Kappa Coefficient Analysis, providing
a comprehensive assessment of the accuracy in change detection.

3.5.1 Overall Accuracy

Total accuracy serves as an indicator of how accurately the reference site is represented on the map.
Typically presented as a percentage, overall accuracy attains 100% when a site is flawlessly classified.
While offering foundational accuracy insights, overall accuracy remains the most straightforward to
calculate and interpret. The formula for calculating overall accuracy is as follows (3):

OverallAccuracy = +(3)

The assessment of overall accuracy for the study area imagery is accomplished using the Overall
Accuracy formula. By subjecting the classification to the overall accuracy calculation, we obtain the
outcome for the study area, as presented below:

Overall Accuracy = 89.4

The result of the overall accuracy is 89.4 of the classification of the study area. Overall accuracy
statistics are commonly used as a standard metric for the accuracy evaluation of categorized imagery.

3.5.2 Kappa Coefficient Analysis

To assess imagery accuracy, the Kappa coefficient is a widely adopted metric worldwide. It serves as
a tool for evaluating image classification. Despite some criticisms, Cohen’s Kappa statistic is
commonly employed as a standard measure to evaluate the accuracy of categorized imagery (Pontius
Jr &Millones, 2011; Stein et al., 2005). The error matrix approach, benefiting from the clear view of
ground areas due to the burned forest canopy, enables more precise identification of high-burn fire
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risk zones compared to low-burn areas. Incorporating dNBR alongside multispectral data enhances
accuracy in fire risk determination (Walz et al., 2007; Epting et al., 2005).

Earlier studies achieved an overall accuracy of 85%, using either pixel-based or polygon-based
methodologies for accuracy assessment. Our pixel-based technique yields a total accuracy of 89.4%,
indicating a substantial level of accuracy for classification (Ye et al., 2018; Jensen et al., 1996).
However, it’s important to note that Cohen’s Kappa statistics have limitations in accuracy
measurement due to unpredictability, quantity conflict, and allocation disagreement (Pontius Jr
&Millones, 2011).

The formula for Kappa coefficient analysis is (4):

P, - Pe

1+ Pe 4)

Kappa Coefficient =

Kappa Coefficient = 0.82

The result of the Kappa Coefficient is 0.82 for the classification of the study area. Kappa statistics are
commonly used as a standard metric for the accuracy evaluation of categorized imagery.

3.5.3 Threshold

In this section, the threshold analysis examines pertinent indices and relies on their outcomes. If a
value surpasses 0.66, the threshold generates a ’Yes’ response, indicating discernible changes
attributed to the forest fire. This visualization illustrates alterations in land cover and underscores the
burn severity rate as well as change detection. Moreover, climate change detection illuminates forest
and land soil transformations resulting from climatic shifts. Conversely, a "No’ outcome indicates that
the indices discern no alterations between the pre-fire and post-fire conditions (Henry et al., 2017).

TABLE 1COHEN’S KAPPA AGREEMENT CATEGORIES

Valueofk StrengthofAgreement
<0.20 Poor
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Good
>0.80 VeryGood

3.5.4 AccuracyDiscussion

Theachievedoverallaccuracyof89.4%intheclassificationof the study area is promising, indicating a
strong agreementbetween the classified imagery and the reference data. Thishigh accuracy level
suggests that the applied change detectionmethodology effectively captures the burn severity and land
cover changes caused by forest fires. It is essential to consider the trade-offs between false positives
and false negatives when interpreting the overall accuracy value. Furthermore, the Kappa coefficient
analysis provides an additional layer of accuracy assessment by accounting for the agreement due to
chance, enhancing the robustness of our accuracy evaluation (Gholinejad&Khesali, 2021).

4. CONCLUSION
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In conclusion, this study underscores the effectiveness of remote sensing, particularly
multispectral data, in identifying fire risk zones post-wildfires or human-induced fires. It highlights
the importance of key indicators, including burnt trees and ground material abundance, in assessing
surface burn severity through unmixing analysis. Landsat data, especially the dNBR index, was used
to evaluate post-fire changes (Laneve et al., 2016). This research opens exciting possibilities for future
applications using Google Earth Engine (GEE) technology, particularly for large-scale fire monitoring
with Landsat data. Landsat time-series data prove invaluable for both visual and numerical change
detection. The primary outcome of this study is the identification of fire hazards, fire danger detection,
and damaged area mapping in the Sherani district. By employing indices like Normalized Burn Ratio
(NBR) and Differenced Normalized Burn Ratio (dANBR), we successfully demonstrate change
detection. This research contributes to enhanced forest fire management and conservation. It equips us
to better respond to and mitigate the impact of forest fires, not only in the Sherani district but also in
broader applications. The methodologies and tools introduced have the potential to bolster fire risk
assessment and prevention strategies.

REFERENCES

1. Han, X., Zhong, Y., & Zhang, L. (2017). Spatial-spectral unsupervised convolutional sparse
auto-encoder classifier for hyperspectral imagery. Photogrammetric Engineering & Remote
Sensing, 83(3), 195-206.

2. Petkovic, M., Garvanov, I., Knezevic, D., &Aleksic, S. (2020). Optimization of geographic
information systems for forest fire risk assessment. 21st International Symposium on
Electrical Apparatus & Technologies (SIELA), 1-4. IEEE.

3. Schroeder, W., Oliva, P., Giglio, L., &Csiszar, 1. A. (2014). The new VIIRS 375 m active fire
detection data product: Algorithm description and initial assessment. Remote Sensing of
Environment, 143, 85-96.

4. Shimabukuro, Y. E., & Smith, J. A. (1991). The least-squares mixing models to generate
fraction images derived from remote sensing multispectral data. IEEE Transactions on
Geoscience and Remote Sensing, 29(1), 16-20.

5. Arai, E., Shimabukuro, Y. E., Dutra, A. C., & Duarte, V. (2019). Detection and analysis of
forest degradation by fire using Landsat/OLI images in Google Earth Engine. In IGARSS
2019 IEEE International Geoscience and Remote Sensing Symposium, 1649-1652. IEEE.

6. Szpakowski, D. M., & Jensen, J. L. (2019). A review of the applications of remote sensing in
fire ecology. Remote Sensing, 11(22), 2638.

7. Gargiulo, M., Iodice, A., Riccio, D., &Ruello, G. (2021). Sentinel-1 time-series analysis for
fires monitoring using Google Earth Engine tools. 6th International Forum on Research and
Technology for Society and Industry (RTSI), 232-236. IEEE.

8. Babu, K. S., &Vanama, V. (2020). Burn area mapping in Google Earth Engine (GEE) cloud
platform: 2019 forest fires in eastern Australia. International Conference on Smart
Innovations in Design, Environment, Management, Planning and Computing (ICSIDEMPC),
109-112. IEEE.

9. Suresh, B. K., &Vanama, V. S. K. (2018). Fire detection in a varying topography using
Landsat-8 for Nainital region, India. 3rd International Conference for Convergence in
Technology (I12CT), 1-4. IEEE.

10. Bin, W., Jian, Y., Zhongming, Z., Yu, M., Anzhi, Y., Jingbo, C., Dongxu, H., Xingchun, L.,
&Shunxi, L. (2013). Parcel-based change detection in land-use maps by adopting the holistic
feature. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
7(8), 3482-3490.

11. Wang, K., Franklin, S. E., Guo, X., &Cattet, M. (2010). Remote sensing of ecology,
biodiversity and conservation: A review from the perspective of remote sensing specialists.
Sensors, 10(11), 9647-9667. https://doi.org/10.3390/s101109647

12. Semela, M., Ramoelo, A., &Adelabu, S. (2020). Testing and comparing the applicability of
Sentinel-2 and Landsat 8 reflectance data in estimating mountainous herbaceous biomass

https://academia.edu.pk/ IDOI: 10.63056/ACAD.004.01.0072| Page 302



https://doi.org/10.3390/s101109647
https://academia.edu.pk/

ACADEMIA International Journal for Social Sciences
Volume 4, Issue 1, 2025 ISSN-L (Online): 3006-6638

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

before and after fire using random forest modelling. In IGARSS 2020-2020 IEEE
International Geoscience and Remote Sensing Symposium (pp. 4493-4496). IEEE.
https://doi.org/10.1109/IGARSS39084.2020.9324048

Rahman, S., Chang, H.-C., Hehir, W., Magill, C., & Tomkins, K. (2018). Inter-comparison of
fire severity indices from moderate (MODIS) and moderate-to-high spatial resolution
(Landsat 8 & Sentinel-2A) satellite sensors. In IGARSS 2018-2018 IEEE International
Geoscience and  Remote  Sensing  Symposium  (pp.  2873-2876). IEEE.
https://doi.org/10.1109/IGARSS.2018.8518449

Izquierdo-Verdiguier, E., Moreno-Martinez, A., Adsuara, J. E., Mufioz-Mari, J., Camps-Valls,
G., Moneta, M. P., Kimball, J. S., Clinton, N., & Running, S. W. (2021). Global upscaling of
the MODIS land cover with Google Earth Engine and Landsat data. In 2021 IEEE
International Geoscience and Remote Sensing Symposium IGARSS (pp. 309-312). IEEE.
https://doi.org/10.1109/IGARSS47720.2021.9554540

Young, N. E., Anderson, R. S., Chignell, S. M., Vorster, A. G., Lawrence, R., & Evangelista,
P. H. (2017). A survival guide to Landsat preprocessing. Ecology, 98(4), 920-932.

Banskota, A., Kayastha, N., Falkowski, M. J., Wulder, M. A., Froese, R. E., & White, J. C.
(2014). Forest monitoring using Landsat time series data: A review. Canadian Journal of
Remote Sensing, 40(5), 362-384.

Hair, J. H., Reuter, D. C., Tonn, S. L., McCorkel, J., Simon, A. A., Djam, M., Alexander, D.,
Ballou, K., Barclay, R., Coulter, P., & others. (2018). Landsat 9 thermal infrared sensor 2
architecture and design. In IGARSS 2018-2018 IEEE International Geoscience and Remote
Sensing Symposium (pp. 8841-8844). IEEE.

El Fellah, S., Rziza, M., & El Haziti, M. (2016). An efficient approach for filling gaps in
Landsat 7 satellite images. IEEE Geoscience and Remote Sensing Letters, 14(1), 62—66.
Celik, N. (2018). Change detection of urban areas in Ankara through Google Earth Engine. In
2018 41st International Conference on Telecommunications and Signal Processing (TSP) (pp.
1-5). IEEE.

Miller, J. D., &Thode, A. E. (2007). Quantifying burn severity in a heterogeneous landscape
with a relative version of the delta normalized burn ratio (ANBR). Remote Sensing of
Environment, 109(1), 66-80.

Stehman, S. V. (1996). Estimating the kappa coefficient and its variance under stratified
random sampling. Photogrammetric Engineering & Remote Sensing, 62(4), 401-407.

Pontius Jr, R. G., &Millones, M. (2011). Death to kappa: Birth of quantity disagreement and
allocation disagreement for accuracy assessment. International Journal of Remote Sensing,
32(15), 4407-4429.

Stein, J., Aryal, J., &Gort, G. (2005). Generalized Bradley-Terry models and multi-class
probability estimates. IEEE Transactions on Geoscience and Remote Sensing, 43(4), 852-856.
Walz, Y., Maier, S. W., Dech, S. W., Conrad, C., & Colditz, R. R. (2007). Classification of
burn severity using moderate resolution imaging spectroradiometer (MODIS): A case study in
the Jarrah-Marri forest of southwest Western Australia. Journal of Geophysical Research:
Biogeosciences, 112(G2).

Epting, J., Verbyla, D., &Sorbel, B. (2005). Evaluation of remotely sensed indices for
assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sensing of
Environment, 96(3-4), 328-339.

Ye, S., Pontius Jr, R. G., &Rakshit, R. (2018). A review of accuracy assessment for object-
based image analysis: From per-pixel to per-polygon approaches. ISPRS Journal of
Photogrammetry and Remote Sensing, 141, 137-147.

Jensen, J. R., et al. (1996). Introductory digital image processing: A remote sensing
perspective (2nd ed.). Prentice-Hall Inc.

Uebersax, J. S. (1982). A generalized kappa coefficient. Educational and Psychological
Measurement, 42(1), 181-183.

Henry, F., Herwindiati, D. E., Mulyono, S., &Hendryli, J. (2017). Sugarcane land
classification with satellite imagery using logistic regression model. IOP Conference Series:

https://academia.edu.pk/ IDOI: 10.63056/ACAD.004.01.0072| Page 303



https://doi.org/10.1109/IGARSS39084.2020.9324048
https://doi.org/10.1109/IGARSS.2018.8518449
https://doi.org/10.1109/IGARSS47720.2021.9554540
https://academia.edu.pk/

ACADEMIA International Journal for Social Sciences
Volume 4, Issue 1, 2025 ISSN-L (Online): 3006-6638

Materials Science and Engineering, 185(1), 012024.

30. Gholinejad, S., &Khesali, E. (2021). An automatic procedure for generating burn severity
maps from the satellite images-derived spectral indices. International Journal of Digital Earth,
14(11), 1659-1673.

31. Laneve, G., Fusilli, L., Marzialetti, P., De Bonis, R., Bernini, G., &Tampellini, L. (2016).
Development and validation of fire damage-severity indices in the framework of the PREFER
project. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
9(6), 2806-2817.

32.  Pakistan Bureau of Statistics. (2024). 7th Population and Housing Census 2023: Detailed
Results. Retrieved from https://www.pbs.gov.pk/digital-census/detailed-results

https://academia.edu.pk/ IDOI: 10.63056/ACAD.004.01.0072| Page 304



https://www.pbs.gov.pk/digital-census/detailed-results
https://academia.edu.pk/

