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ABSTRACT 

Forest fires are a common and devastating natural disaster that causes widespread damage 

to forest vegetation and poses significant threats to ecosystems. Detecting and monitoring forest fires 

are crucial for mitigating their impact on the environment and human communities. This research 

paper focuses on remotely monitoring the change detection in the Sherani Balochistan Pine Nut 

Forest, which experienced extensive fires, resulting in substantial damage to the Pine Nut crop. Being 

the world’s largest Pine Nut crop, this event has significant implications for global nut crop 

production. The proposed solution utilizes remote sensing techniques to detect major changes in the 

Pine Nut Forest, with images depicting the Sherani forest fire collected from Landsat 9 satellite 

imagery. It involves actual fire detection, monitoring of damaged areas, and risk hazard analysis. The 

research employs temporal analysis, which examines the burned area at different time series to 

observe changes in the geographic area and potential loss of forest cover. Satellite imagery is 

obtained through the GEE for geospatial analysis, using Landsat data with a spatial resolution of 30 

meters for improved comparison and collation of semi-centennial forest data. The approach involves 

the calculation of indices for the Pine Nut Forest using the NBR and dNBR. These indices help 

identify the extent of affected land and the severity of the burn. By utilizing this novel approach, the 

forest department can effectively detect changes in land and climate, enabling better decision-making 

based on the collected data. Overall, this research contributes to improved forest fire management 

and conservation efforts. 

Keywords: Google Earth Engine (GEE), Normalized Burn Ratio (NBR), Differenced Normalized Burn 

Ratio (dNBR) 
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1. INTRODUCTION 

A profound natural geo-hazard, forest fires hold the potential to become uncontrollable if timely 

action is not taken. These fires exhibit a remarkable capacity for rapid dissemination, swiftly 

engulfing vast expanses of terrain and inflicting extensive damage upon ecosystems. The ensuing 

consequences are characterized by significant losses in vegetation, leading to irreparable devastation 

of crops and trees endemic to the affected forests (Han et al., 2017). The forest fire engenders a 

significant extent of destruction across a wide coverage area, extending beyond mere vegetation 

damage. Its impact reverberates beyond the ecological realm, affecting nearby communities, rescue 

teams dedicated to forest preservation, and a myriad of animals residing within the ecosystem. The 

confluence of dense smoke and prolonged fire duration leads to the demise of avian species. 

Moreover, the sustained blaze for several days has multifaceted repercussions, including implications 

for neighboring residences and inhabitants near the forest (Petkovic et al., 2020). The annual forest 

fires reach a high percentage which disturbs most of the earth’s forest area. Forest fires occur in most 

places and mostly happen annually (Schroeder et al., 2014). It is the most common type of natural 

disaster happening in some specific places every year. 

Remote Sensing’s versatile, scalable, and adaptable nature has ushered advancements across diverse 

disciplines. It stands as a pivotal factor driving progress in various domains (Shimabukuro & Smith, 

1991). Remote sensing enables comprehensive observations across multiple sectors, including risk 

management, forest monitoring, and land/cover area surveillance, through the analysis of satellite 

images (Arai et al., 2019). Remote sensing encompasses three primary modalities: ground-level data 

collection from tall towers, aerial data acquisition via UAVs (Unmanned Aerial Vehicles) and 

helicopters, and satellite imagery sourced from satellites such as MODIS, Sentinel, and Landsat. This 

research focuses on utilizing Landsat imagery to gather information about the Balochistan Shirani 

Pine-nut Forest. 

Utilizing Google Earth Engine (GEE) tools, satellite imagery becomes a potent resource for 

monitoring diverse regions. Specifically, this research employs GEE to oversee the Koh-e-Sulaiman 

region’s Baluchistan Shirani area, which boasts the world’s largest Pine-Nut Forest. At the outset of 

2022, this expanse experienced a devastating fire that endured for nearly two weeks, resulting in 

substantial forest destruction. This forest is currently susceptible to extensive fires, inflicting 

widespread damage upon the Pine-nut Forest and compromising nut crop yields. This incurs a 

profound impact on global nut crop production, signifying a substantial loss in Pine Nut resources on 

a global scale (Szpakowski & Jensen, 2019). In 2022, the forest fires in the Pine Nut Shirani region 

resulted in a substantial 40% damage to the global Pine nut crop. The primary impact of these fires is 

inflicted upon both the forest vegetation and the crops it sustains. Employing the Landsat approach 

facilitated by the Google Earth Engine (GEE) tool, satellite images will be harnessed for fire analysis. 

GEE’s geospatial analysis of satellite imagery aids in detecting areas of loss, as it effectively maps the 

burned regions. The integration of Landsat data enables efficient detection of the burned areas, 

contributing to accurate assessment (Gargiulo et al., 2021). 

Landsat provides satellite images of years which help in the collection of datasets and more data 

provide a better comparison of the degradation of the forest (Babu & Vanama, 2020). Landsat offers 

superior resolution, utilizing the Operational Land Imager (OLI) data to deliver optimal satellite 

imagery at a resolution of 30 meters. When juxtaposed with alternatives such as MODIS and VIIRS, 

Landsat consistently yields more favorable results, particularly in forest fire detection, owing to its 

finer resolution and enhanced comparative performance (Suresh & Vanama, 2018; Bin et al., 2013). 

Landsat, synergistically paired with the Google Earth Engine (GEE), furnishes Shirani Balochistan’s 

satellite images. Leveraging this imagery, pre-fire and post-fire data can be analyzed to discern 

transformations within the Pine-Nut Forest. This comparative analysis effectively identifies damaged 
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regions, establishing a threshold for change detection. It yields essential insights into the extent of 

fire-induced expansion and destruction within the Shirani forest area. 

Initiating in Baluchistan, the fire’s uncontrolled progression reached parts of the Khyber Pakhtunkhwa 

province, exacerbating the situation. Employing the temporal data analysis facilitated by the Landsat 

approach, calculated indices enable the detection of changes within the Pine Forest. Furthermore, 

these indices facilitate the straightforward identification of burn severity, providing a comprehensive 

understanding of the fire’s impact (Wang et al., 2010). Utilizing appropriate indices, particularly 

through the Landsat approach, change detection within the Pine Forest is facilitated. The application 

of indices such as the Normalized Burn Ratio (NBR) and Differenced Normalized Burn Ratio (dNBR) 

streamlines the identification of burn severity and changes within the pine forest. This innovative 

method empowers the forest department to effectively discern shifts in both land and climate 

conditions, capitalizing on the amassed data to draw informed conclusions. The inherent capability of 

our approach extends to the straightforward identification of diverse changes, encompassing 

alterations in land cover and climate dynamics. 

2. RELATED WORK 

Forest fires, as natural geo-hazards, epitomize uncontrolled infernos that ravage without restraint, 

leaving extensive devastation in their wake. These uncontained fires wreak havoc, exacting colossal 

losses upon the impacted regions. The rampant nature of these fires precipitates not only substantial 

forest damage but also impinges on crops, local inhabitants, and their dwellings. This paper delves 

into methods to mitigate and forestall forest fires, underscoring the critical need for proactive 

measures to avert further catastrophe (Petkovic et al., 2020). Remote sensing plays a pivotal role 

across various domains due to its ability to provide precise and comprehensive observations from a 

distance. Its significance is particularly pronounced in managing diverse fields. The application of 

remote sensing encompasses a range of critical functions, including risk mitigation, forest surveillance 

utilizing remote sensor methodologies, and continuous monitoring of both forested and terrestrial 

regions. This research focuses on the utilization of Google Earth Engine (GEE) to facilitate forest 

monitoring. Employing the Sentinel-1 approach, this study aims to amass pertinent data essential for 

achieving these objectives (Gargiulo et al., 2021). This study focuses on analyzing a five-year dataset 

spanning from 2015 to 2020. The primary objective is to perform a comparative analysis of yearly 

data to detect changes, particularly concentrating on areas affected by fire-related incidents. By 

utilizing time series data, the research aims to visually depict alterations in the Pine Forest, 

showcasing both its forested expanse and the extent of degradation caused by fire-induced damage. 

The investigation primarily hinges on temporal data analysis to meticulously assess the outcomes of 

the comparative monitoring efforts. 

The research adopts a temporal analysis approach to facilitate a comprehensive data comparison. This 

endeavor involves employing satellite imagery from both Sentinel-2 and Landsat-8 platforms within 

the Google Earth Engine (GEE) framework. The primary objective revolves around mapping the fire-

affected regions across Australia and subsequently conducting a meticulous comparative assessment 

between the data derived from Sentinel-2 and Landsat-8. A noteworthy finding emerges from the 

comparison: the satellite images acquired from Sentinel-2 outshine those from Landsat-8 in terms of 

quality. This superiority is attributed to Sentinel-2’s finer resolution, which significantly enhances the 

clarity of the imagery. Through the integration of Sentinel-2 imagery within the GEE platform, a more 

distinct depiction of the burned areas is achieved, enabling a more accurate identification of the fire-

ravaged regions (Babu & Vanama, 2020). 

The grasslands of Africa span a vast expanse and hold immense significance as a primary source of 

sustenance and habitat for various animal species. Preserving the grasslands, particularly in South 

Africa, takes on heightened importance. Notably, the grassy regions in elevated or steep terrains are 
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particularly vulnerable to transformation due to significant environmental shifts. These alterations 

could stem from climate variations, geological hazards, or even forest fires. Safeguarding these areas 

assumes paramount importance. 

This study adopts a remote sensing methodology, employing both the Landsat-8 and Sentinel-2 

platforms, to address these concerns. The objective is to compare the efficacy of these techniques in 

assessing the grasslands before and after fire incidents, consequently facilitating change detection 

analysis. Through this comparative approach, the research aims to glean insights into the effectiveness 

of each technique in capturing the alterations wrought by such events. The outcomes reveal that both 

the Landsat-8 and Sentinel-2 approaches yield robust results in identifying and delineating fire-

affected areas. These techniques play a pivotal role in accurately pinpointing the burned regions, 

providing invaluable information to inform conservation efforts and management strategies (Semela 

et al., 2020).  

3. METHODS AND MATERIALS 

3.1 Study area 

Sherani District spans an area of 4,310 square kilometers (PBS, 2024). It encompasses 1 Tehsil and 7 

Union Councils. The focal study area of this research is Sherani Balochistan, situated at a latitude of 

31°17’14 North and longitude of 70°2’28 East within the province of Balochistan. Sharing its eastern 

borders with South Waziristan, the district is positioned to the northeast of Quetta City, the provincial 

capital of Balochistan. Musakhail lies to the south, with Zhob District bordering the west. The district 

is characterized by its mountainous terrain within the Sulaiman Range with an elevation ranging from 

678 to 3,356 meters. Geographically, Sherani lies approximately 325 km northeast of Quetta, the 

provincial capital of Balochistan. The total population of the district is 191,687 with an average 

household size of 5.31 and a population density of 44.47 people/km
2
 (PBS, 2024). The total forest 

area within Sherani district spans 6,277 hectares. Zhob attained district status in 2006, followed by the 

subsequent division of Sherani from Zhob. The name derives from the Sherani tribe, a prominent local 

community in northeastern Balochistan. Shin Bazai stands as a notable town within the vicinity, while 

the district headquarters is situated in” Stano Raaghah” town. The district’s topography predominantly 

comprises towering mountains adorned with valuable” Chalghoza” trees, a source of both income and 

local pride. The local economy primarily relies on agriculture and livestock. 

 
Figure 1. The geographic extent of Pakistan (a), Balochistan (b), and Sherani District (c). 
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3.2 Methods 

In this segment, we provide an overview of Landsat and its application to the specified target site for 

our proposed topic using Google Earth Engine (GEE) tools (Izquierdo-Verdiguier et al., 2021). The 

detailed methodological workflow of the present study is depicted in Figure 2. 

 

Figure 2. The detailed methodological workflow of the present study. 

3.2.1 Landsat Overview 

Landsat initially launched on July 23, 1972, has consistently provided aerial satellite images, 

accumulating data over nearly four decades. This uninterrupted Landsat dataset equips land managers 

and policymakers with vital information for informed decisions regarding natural resources and the 

environment, capturing space-based photographs of Earth’s land surface. By 2022, nine Landsat 

satellites had been launched, marking their significance in remote sensing (Young et al., 2017). These 

remote sensing platforms amass extensive collections of satellite imagery, including visual and 

climate data, and were chosen for this thesis due to the unique 20-year dataset available, allowing for 

species distribution estimation and the identification of natural and human-induced changes on a 

larger scale. The diverse spectral bands of Landsat satellites find applications spanning ecology to 

geopolitics, with their continuous time series extending from 1972 to the present and a promising 

future with Landsat-9 (Banskota et al., 2014). This research section employed data from Landsat 9 to 

facilitate comprehensive analysis. 

3.2.2 Landsat Data 

The Landsat 9 satellite was utilized to collect images for the study area in 2022, providing a single-

year dataset with images taken at a 30-meter resolution. Landsat 8 data accessibility extends from 

October 2021 to the present (Hair et al., 2018). To access the Landsat 8 dataset, a snippet of the 

Landsat 8 Earth Engine code must be incorporated into the JavaScript coding. Each Landsat dataset 

snippet is unique and specific to the satellite used. Landsat 9 features multiple bands, including SR B4 

(RED), SR B3 (GREEN), and SR B2 (BLUE). Additionally, SR 10 is designated for surface 

temperature analysis 
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3.3 Pre-Processing 

In the Pre-processing section, we delve into the initial stages of refining data. This segment 

comprehensively addresses the two pivotal elements: Cloud Cover and Striped Images. 

3.3.1 Cloud Cover 

In Landsat imagery, it is crucial to establish a specific threshold for Cloud Cover, ensuring it remains 

below a predetermined value. This is imperative to guarantee the accurate processing of the acquired 

images. In the designated study area, the utilization of Landsat satellite imagery is a pivotal step. Once 

the imagery undergoes initial filtration, it is imperative that the images subsequently undergo a Cloud 

Cover assessment. In this study area, the acceptable Cloud Cover limit is set at 15%. Exceeding this 

threshold leads to compromised image processing accuracy, resulting in distorted outcomes. 

3.3.2 Striped Images 

During the pre-processing phase of the study area, the Landsat 7 satellite images exhibit a striped 

pattern, stemming from a malfunction in Landsat 7’s Scan Line Corrector on May 31, 2003. Through 

the implementation of various lines of code, these stripes can be effectively rectified, restoring the 

images to their original state. This challenge represents the primary limitation of Landsat 7 imagery. 

All images captured by Landsat 7 between 2003 and 2013 possess this striped appearance, which can 

be remedied by applying a specific corrective code, resulting in the restoration of the original image 

(El Fellah et al., 2016). Once this restoration is achieved, further processing can be conducted on the 

unblemished image. Notably, some data from the 2005 timeframe might still exhibit striped patterns 

and gaps due to the Scanner Row Prediction Anomaly associated with Landsat 7. 

3.4 Indices 

Spectral indices are essential for reducing brightness distortions like shadows and clouds while 

highlighting subtle spectral variations. They rely on the difference between two bands, averaged by 

their sum. These indices use a mathematical equation with ’n’ integers, corresponding to spectral 

bands, to determine the index value for each pixel. In this study, the Normalized Burn Ratio (NBR) 

and Differenced Normalized Burn Ratio (dNBR) are used. NBR assesses burn area, while dNBR 

gauges severity. Using Landsat 9’s 30-meter resolution imagery, captured pre- and post-fire, and 

Google Earth Engine, NBR values are compared for change detection in the Sherani district. This 

offers insights into fire impact on vegetation health and severity. In this study area, two different 

indices are applied to the forest fire in the Sherani district. The indices are as below: 

3.4.1 Normalized Burn Ratio (NBR) 

The Normalized Burn Ratio (NBR) pinpoints fire-affected areas and assesses burn severity. In the 

Sherani study, NBR reveals the burned land’s extent and severity. Landsat 9 pro- vides relevant 

imagery, captured between May 8 and May 24, 2022. Leveraging Google Earth Engine (GEE), 

images are filtered and subjected to pre- and post-fire dates. NBR formula, applied when both dates 

are input, compares images for change detection. This process highlights burn-induced alterations. 

Filtered imagery is processed using the NBR formula for visualizing changes. The Normalized Burn 

Ratio (NBR) is calculated using the equation (1): 

    
        

        
          (1) 

The Normalized Burn Ratio (NBR) formula is calculated as (SR B5 - SR B7) / (SR B5 + SR B7), 

where SR B5 represents the Near Infrared band (NIR) and SR B7 represents the Short- wave Infrared 

band (SWIR). These band assignments vary among Landsat satellites. In later versions like Landsat 8 

and 9, SR B5 is designated as Near Infrared (NIR), and SR B7 is designated as Short-wave Infrared 
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(SWIR). This formula effectively captures spectral distinctions for accurate burn area assessment 

(Celik, 2018). 

 
Figure 3.   Detecting Changes with Normalized Burn Ratio (NBR) 

3.4.2 Differenced Normalized Burn Ratio (dNBR) 

The Differenced Normalized Burn Ratio (dNBR) is utilized to identify fire-affected areas and quantify 

burn severity. For assessing the extensive impact of burns, methods like dNBR are highly effective. In 

the study of the Sherani District, dNBR is applied to visualize burned regions and assess the severity 

of the burns. Landsat 9 satellite imagery acquired between May 8 and May 24, 2022, through Google 

Earth Engine (GEE), supports this analysis. 

In this process, NBR values obtained from both Pre-fire and Post-Fire dates are subjected to filtration 

using the dNBR formula. This calculation indicates the severity of the burned land. The processed 

imagery, post dNBR formula, serves to visualize changes in the affected area (Miller and Thode, 

2007). The formula for dNBR is as follows (2): 

dNBR=NBRPreFire−NBRPostFire                             (2) 

The Differenced Normalized Burn Ratio (dNBR) is derived by subtracting the pre-fire Normalized 

Burn Ratio (NBR) from the post-fire NBR. This mathematical process yields the desired outcomes. 

Our computation of dNBR is achieved by analyzing the disparity between initial NBR imagery. We 

sought to evaluate NBR’s effectiveness by employing this method-subtracting pre-fire from post-fire 

imagery. Remarkably, dNBR accentuates changes between NBR images, effectively highlighting fire 

presence. The computation involves filtering NBR images based on specific dNBR ranges. 

Noteworthy dNBR ranges include: 

The initial two severity categories pertain to areas where fire-induced productivity increase is 

observed, specifically in grassy regions marked by strongly negative dNBR values, indicating 

elevated post-fire productivity (Figure 4). The bulk of non-burnt pixels is situated around the zero 
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mark on the chart. The subsequent four levels encompass more extensively burned regions with 

notably positive dNBR values, often indicating recent burn activity. 

 

Figure 4. Differenced Normalized Burn Ratio (dNBR) Spectrum with Severity Levels and Map 

Legend 

3.4.3 dNBR Change Detection Analysis 

The process involves segmenting the Pre-fire NBR from the Post-fire NBR, each traversing specific 

ranges that correspond to distinct colors. These colors signify the intensity of burn within specific 

areas as detected by dNBR’s change analysis. The ranges are numerically defined within the code, 

ensuring precision across the entire study area. Change detection hinges on pixel-by-pixel comparison 

between Post-fire and Pre-fire pixels, carried out through 7 ranges, each associated with a unique 

color to visually represent the extent of change. This method is applied to the Sherani District, 

exemplifying change detection within a well-defined range of values. The specifics of Sherani’s 

Change Detection are outlined below in Figure 5. 

 
Figure 5. dNBR Change Detection Mapping Through dNBR Ranges 
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3.4.4 Change Detection Analysis 

The process involves evaluating changes across various dNBR ranges. Every pixel is juxtaposed with 

the pre-fire state, generating a pixel-based visualization of the outcome. This approach yields results 

depicting pixel classes, corresponding hectares, and the total fire-affected area in hectares. The initial” 

Enhanced Regrowth” category indicates post-fire regrowth levels: high, low, or unburned, providing 

insights into the ecological response after the fire event. Subsequently, the last four categories present 

actual fire-related outcomes, capturing the severity and extent of fire impact. 

The study area table, a pivotal component of this assessment, provides a comprehensive overview of 

the recorded data. It highlights the distribution of pixels across these distinct categories, enabling a 

quantitative understanding of the changes observed due to the forest fire. This detailed presentation 

facilitates both qualitative interpretation and quantitative analysis, fostering a deeper comprehension 

of the ecological dynamics in the aftermath of the fire event. The study area table is presented in 

Figure 6. 

 
Figure 6. Table Showing Results of Change Detection 

3.4.5 Time Series Analysis 

The scatter chart displays the Normalized Burn Ratio (NBR) values across different dates in May, 

coinciding with instances of fire occurrence. The chart effectively delineates the specified dates and is 

enhanced with a trendline that accentuates the Change Detection pattern. The chart is presented 

below: 

 

Figure 7.NBR-Time Series Analysis Depicting Forest Fire and Change Detection Trend 
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3.5 Accuracy 

This results section presents both the overall accuracy and the Kappa Coefficient Analysis, providing 

a comprehensive assessment of the accuracy in change detection. 

3.5.1 Overall Accuracy 

Total accuracy serves as an indicator of how accurately the reference site is represented on the map. 

Typically presented as a percentage, overall accuracy attains 100% when a site is flawlessly 

classified. While offering foundational accuracy insights, overall accuracy remains the most 

straightforward to calculate and interpret. The formula for calculating overall accuracy is as follows 

(3): 

                
     

   
                                 (3) 

The assessment of overall accuracy for the study area imagery is accomplished using the Overall 

Accuracy formula. By subjecting the classification to the overall accuracy calculation, we obtain the 

outcome for the study area, as presented below: 

Overall Accuracy = 89.4 

The result of the overall accuracy is 89.4 of the classification of the study area. Overall accuracy 

statistics are commonly used as a standard metric for the accuracy evaluation of categorized imagery. 

3.5.2 Kappa Coefficient Analysis 

To assess imagery accuracy, the Kappa coefficient is a widely adopted metric worldwide. It serves as 

a tool for evaluating image classification. Despite some criticisms, Cohen’s Kappa statistic is 

commonly employed as a standard measure to evaluate the accuracy of categorized imagery (Pontius 

Jr & Millones, 2011; Stein et al., 2005). The error matrix approach, benefiting from the clear view of 

ground areas due to the burned forest canopy, enables more precise identification of high-burn fire 

risk zones compared to low-burn areas. Incorporating dNBR alongside multispectral data enhances 

accuracy in fire risk determination (Walz et al., 2007; Epting et al., 2005). 

Earlier studies achieved an overall accuracy of 85%, using either pixel-based or polygon-based 

methodologies for accuracy assessment. Our pixel-based technique yields a total accuracy of 89.4%, 

indicating a substantial level of accuracy for classification (Ye et al., 2018; Jensen et al., 1996). 

However, it’s important to note that Cohen’s Kappa statistics have limitations in accuracy 

measurement due to unpredictability, quantity conflict, and allocation disagreement (Pontius Jr & 

Millones, 2011). 

The formula for Kappa coefficient analysis is (4): 

                     (4) 

Kappa Coefficient = 0.82 

The result of the Kappa Coefficient is 0.82 for the classification of the study area. Kappa statistics are 

commonly used as a standard metric for the accuracy evaluation of categorized imagery. 

3.5.3 Threshold 

In this section, the threshold analysis examines pertinent indices and relies on their outcomes. If a 

value surpasses 0.66, the threshold generates a ’Yes’ response, indicating discernible changes 
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attributed to the forest fire. This visualization illustrates alterations in land cover and underscores the 

burn severity rate as well as change detection. Moreover, climate change detection illuminates forest 

and land soil transformations resulting from climatic shifts. Conversely, a ’No’ outcome indicates that 

the indices discern no alterations between the pre-fire and post-fire conditions (Henry et al., 2017).  

Table 1. Cohen’s Kappa Agreement Categories 

Valueofk Strength of Agreement 

<0.20 Poor 

0.21-0.40 Fair 

0.41-0.60 Moderate 

0.61-0.80 Good 

>0.80 Very Good 

3.5.4 Accuracy Discussion 

Theachievedoverallaccuracyof89.4%intheclassificationof the study area is promising, indicating a 

strong agreement between the classified imagery and the reference data. This high accuracy level 

suggests that the applied change detection methodology effectively captures the burn severity and 

land cover changes caused by forest fires. It is essential to consider the trade-offs between false 

positives and false negatives when interpreting the overall accuracy value. Furthermore, the Kappa 

coefficient analysis provides an additional layer of accuracy assessment by accounting for the 

agreement due to chance, enhancing the robustness of our accuracy evaluation (Gholinejad & Khesali, 

2021). 

4. CONCLUSION 

In conclusion, this study underscores the effectiveness of remote sensing, particularly multispectral 

data, in identifying fire risk zones post-wildfires or human-induced fires. It highlights the importance 

of key indicators, including burnt trees and ground material abundance, in assessing surface burn 

severity through unmixing analysis. Landsat data, especially the dNBR index, was used to evaluate 

post-fire changes (Laneve et al., 2016). This research opens exciting possibilities for future 

applications using Google Earth Engine (GEE) technology, particularly for large-scale fire monitoring 

with Landsat data. Landsat time-series data prove invaluable for both visual and numerical change 

detection. The primary outcome of this study is the identification of fire hazards, fire danger 

detection, and damaged area mapping in the Sherani district. By employing indices like Normalized 

Burn Ratio (NBR) and Differenced Normalized Burn Ratio (dNBR), we successfully demonstrate 

change detection. This research contributes to enhanced forest fire management and conservation. It 

equips us to better respond to and mitigate the impact of forest fires, not only in the Sherani district 

but also in broader applications. The methodologies and tools introduced have the potential to bolster 

fire risk assessment and prevention strategies. 
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