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ABSTRACT 

The evolution of 5G networks and growing demand in high capacity and low latency communication has 

spurred the interest to implement unmanned aerial vehicles (UAVs) as aerial base stations to facilitate 

device to device (D2D) communications. Nevertheless, the problem of effective UAV localization is 
complicated, particularly in dynamic and high-density environments because the distribution of users and 

the conditions of a channel vary rapidly. The given study puts forward the Modified Various Search 

Optimization (MVSO) algorithm, composed of adaptive inertia weighting and chaotic mutation operators, 

to enhance the UAV positioning, coverage, and the quality of links as well as lower the expended energy. 
MATLAB simulated the algorithm and compared it to Particle Swarm Optimization (PSO) and Genetic 

Algorithm (GA) based on user densities and UAVs at multiple densities. Experiments prove that MVSO 

performs better in terms of up to 19.2% on the coverage ratio, 20% on energy consumption, and 10 11 dB 
on signal to noise ratio (SNR) and convergence speeds are 25 35 faster than baseline approaches. Such 

increment in gains is explained by the ability of MVSO to flexibly balance between global 

exploration/local exploitation in a way that allows speed and energy-efficient how to respond to network 

dynamics. Its results demonstrate the feasibility of MVSO in terms of real-time deployment of UAVs fleets 
in an urban 5G D2D network, considering planned densification to support communication as well as in 

case of emergency. 

Keywords: UAV localization, MVSO algorithm, 5G networks, D2D communication, optimization, 
coverage ratio, energy efficiency, SNR, PSO, GA, metaheuristic, adaptive inertia weighting, chaotic 

mutation, MATLAB simulation. 

INTRODUCTION 

The dynamically developing wireless communication technologies have truly revolutionized the current 

information exchange, and fifth-generation (5G) networks are one of the vital facilitators of the ultra-

reliability, low latency and high capacity services. 5G will be able to utilize up to 100 billion connected 

devices with the maximum data rates of 10 Gbps and the latency measured in milliseconds with 
everywhere connectivity of the emerging forms of communication that include the Internet of Things 

(IoT), autonomous systems, and intelligent cities [1], [2]. One of the prominent features in 5G 

architecture would be the use of Device-to-Device (D2D) communication where user devices can 
communicate directly with each other without passing through the core network to gain spectral 

efficiency, reduce latency and offloads base station traffic [3], [4]. Nevertheless, obstructions, 

interference, and haphazard user placement tend to challenge the operation of D2D links in high-density 

urban settings and require new solutions to ensure a stable connection [5]. 
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Unmanned Aerial Vehicles (UAVs) are now a flexible option to overcome those limitation since they 

have mobility, adaptability, and line-of-sight (LoS) benefits [6], [7]. The use of UAVs (i.e., drones) can 
be deployed in minutes to serve as flying relays or base stations to extend the reach of wireless 

communications, as well as increase the quality of links and enable emergency communication situations 

[8], [9]. They are applied in a wide array of fields, such as public safety surveillance [10], disaster 

response [11], logistics, and letter delivery [12], aerial mapping [13] and environmental tracking [14]. 
Contactless delivery of medical supplies and remote patient monitoring by UAVs were observed during 

the COVID-19 pandemic, thus, demonstrating the potential of these devices in mission-critical 

communication [15]. 

The UAV inclusion to the D2D communication system with 5G presents new opportunities and problems. 

The positioning of the UAVs is of paramount significance in order to achieve maximum coverage, high 

signal-to-noise ratio (SNR) and minimized energy consumption [16]. Unlike the base stations, where 

relocation may require a long process of installations, UAVs can move according to the patterns of user 
mobility in specific zones and regions especially during an outbreak in a disaster-stricken location, 

impromptu events, or when the network is changing rapidly [17]. Nevertheless, the location of UAVs is a 

complicated optimization issue and it depends on the terrain, obstacles, user density, interference and 

UAV flight restrictions (battery limit, flight range and payload limit) [18], [19]. 

Most of these findings of recent literature on UAV-assisted communication focus on the path planning 

and coverage optimization by deploying multiple computational intelligence path planning algorithms, 
including Particle Swarm Optimization (PSO) [20], Genetic Algorithms (GA) [21], Grey Wolf Optimizer 

(GWO) [22], and Ant Colony Optimization (ACO) [23]. On the one hand, these approaches have been 

shown to be promising with regard to trajectory and coverage efficiency, but, on the other hand, they are 

not always flexible to dynamic real-life urban conditions and are easily susceptible to early convergence 
[24]. Furthermore, the Penguin Search Optimization Algorithm (PSOA) given that it is useful in 

addressing particular global optimization challenges is still underutilized in localizing the UAV in D2D 

communication [25]. 

In the study, we develop an improved Modified Various Search Optimization (MVSO) algorithm in 

which we have included the adaptive inertia weighting strategy to explore exploit trade-offs; and chaotic 

mutation operator which helps in escaping local optima. It is desired to optimize UAV localisation in a 

5G D2D network where coverage is maximised and energy consumption is minimised with good SNR 
performance. The proposed method is simulated in detail to compare the performance with benchmark 

algorithms when the coverage ratio, energy efficiency and protection of links are discussed using 

MATLAB, showing better results. 

LITERATURE REVIEW 

UAV-Assisted Communication in Next-Generation Networks 

Added value of UAVs in next-generation networks has earned remarkable consideration because it 
enables on-demand coverage and flexible or deployable resources, and enhanced line of sight (LoS) links. 

It has been shown through various research that the UAVs can operate as aerial base stations to increase 

cellular and ad hoc network coverage [26], [27]. Compared with terrestrial base stations, UAVs are highly 

mobile and thus capable of dynamically repositioning to meet changing user demands and environmental 
constraints and can prove to be valuable in both emergency and planned network [28]. According to 

research carried out by Fotouhi et al. [29], deployment strategies of UAVs requested consideration of air-

to-ground channel modeling, user mobility, and interference management in order to obtain optimum 
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performance. More, Al-Hourani et al. [30] established a mathematical model of UAV height optimization 

to optimize the probability of coverage in urban environments, indicating that, at urban scale, the height is 

important to obtain an appropriate balance between coverage area and path loss. 

Device-to-Device Communication and UAV Integration 

D2D communication is a key feature of 5G networks that enables direct device to device communication 

not using the base station. Such technology brings about considerable enhancement of spectral efficiency, 
latency reduction and more local traffic [31]. Combined with UAVs, D2D communication has a stronger 

spatial diversity and adaptive relay location [32]. Research has proved the performance of UAV-aided 

D2D networks to be quite successful especially in disaster recovery, where ground infrastructure has been 
compromised [33]. Fan et al. [34] designed a UAV relay system to improve D2D links in urban terrain 

and proved that the UAV positioning facilitates throughput and reliability substantially in contrast to 

fixed relays. In the same way, a model of interplay between UAV mobility and the quality of D2D links is 

described by Wu et al. [35], with the emphasis on non-uniform trends in the user density and mobility 

patterns that should be combated by adaptive localization algorithms. 

Optimization Techniques for UAV Path Planning and Localization 

The task of UAV localization and path planning can be seen fundamentally as an optimization problem 
with multiple objectives that usually conflict with each other (e.g., coverage maximization, energy 

minimization and connectivity) [36]. Many old solutions used to be based on deterministic algorithms, 

recently it moved to the bio-inspired and metaheuristic optimization algorithms [37]. It has been common 
to use Particle Swarm Optimization (PSO), Genetic Algorithms (GA) and Ant Colony Optimization 

(ACO) in the UAV deployment problems [38]. Nevertheless, the approaches are subject to early 

termination and the difficulty of adaptation to dynamic settings [39]. The most recent advances in hybrid 

optimization methods, including the hybridization of swarm intelligence with chaotic search techniques, 

have demonstrted that global search performance and stability was better [40]. 

Penguin Search Optimization Algorithm (PSOA) has already been suggested as an interesting nature-

inspired method of global optimization, and it is simulated after the penguin foraging behavior [41]. It has 
seen limited use in UAV path planning, although research into other engineering fields indicates that it 

has nearmax potential to effectively avoid local optima and converging to near-global solutions [42]. 

Variants of PSOA have added adaptive inertia and mutation-based variety conservation techniques in 

effort to better convergence in difficult optimization landscapes [43]. 

Multi-Objective Optimization in UAV-Assisted Networks 

Multi-objective optimization models provide opportunities to take into account multiple performance 

measures simultaneously, but this is critical to UAV-supported D2D systems. Liu et al. [44] incorporated 
multi-objective evolutionary algorithm and radiated a unified optimization of energy consumptions and 

SNR of UAV networks in UAV networks, presenting that a balanced trade-off brings improved network 

sustainability in the long run. On the same, Khuwaja et al. [45] thoroughly examined multi-objective 
optimization methods to deploy UAVs and concluded that dynamic situations are better off with adaptive 

algorithms than static deployment policies. Sharma and Chaurasiya [46] conducted another research study 

to simultaneously optimize network coverage and UAV flight time using a hybrid metaheuristic algorithm 

and reported increased operational efficiency. 
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Multi-objective optimization with the exploitation of chaotic mutation operators has been found succinct 

in terms of sustaining high diversity in the population as well as preventing stagnation [47]. Such a 
technique applies especially to the high-mobility D2D scenarios, where a fast variation in the distribution 

of users can lead to conventional algorithms prematurely converging. 

UAV Energy Management for Communication Networks 

The specifications of UAV are divided into energy efficiency, where flight time is limited by battery 
capacity [48]. It has demonstrated that efficient UAV localization will significantly lower energy 

requirements owing to an smaller amount of unnecessary transports and improved communications routes 

[49]. Mozaffari et al. [50] proposed an energy-wise UAV deployment model that takes into account the 
communication energy and propulsion energy, and comparing energy-wise placement to coverage-

maximizing placement determined that they are not the same. Adaptive recharge timing as addressed by 

Chen et al. [51] enables UAVs to achieve continuous availability in networks without deep powers 

outages which is decisive in D2D emergency cases. Additional treatments vented to urban infrastructure, 
such as implementing recharge stations as suggested by Liu et al. [52] would also increase longevity of 

UAV operations. 

Simulation and Modeling for UAV-Assisted D2D Networks 

The simulation structures are crucial to testifying the use of the UAV deployment algorithms prior to 

actual application. The most extensively used tools in regard to modeling UAV assisted networks are 

MATLAB; others include; NS-3 and OMNeT++ [53]. Realistic channel models, user mobility patterns, 
and effects of obstacles on path planning have also been incorporated by researchers into their simulations 

to guarantee robustness [54]. It is common to use random waypoint mobility model and with the addition 

of clustering behavior this has been successful at simulating the use of D2D communication in a realistic 

urban application [55]. Complex simulations that combine both network emulation and hardware in-the-
loop testing are currently being used to confirm UAV- assisted D2D performance in different weather 

conditions, as well as in the presence of various types of interference [56]. 

Summary of Literature Gaps 

Although there are studies that have considered the deployment of UAVs, path planning, and optimization 

of their coverage, few of them pay attention to their context in terms of localization as tools to reinforce 

D2D communication in 5G networks. Furthermore, the operation of an improved Penguin Search 

Optimization Algorithm using adaptive inertia and chaotic mutation is still under-studied regarding the 
same. The literature does not include exhaustive frameworks enabling real-time adaptability, multi-

objective optimization, and energy-conscious UAV localization, which has been made particular in D2D 

scenarios in the most urban 5G environments. This study seeks to address this gap by suggesting a 
Modified Various Search Optimization (MVSO) method, which seeks to restrict network coverage, 

energy dissipation and signal quality in situations of high dynamic networks. 

RESEARCH METHODOLOGY 

Overview of the Methodological Framework 

The approach followed in this research is systematic and repetitive in making and realizing a formulated 

UAV localization course that is optimized and proved using the 5G enabled Device-to-Device (D2D) 

communication structure. The strategy combines modeling through simulation, enhancing algorithms, and 
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performance modeling. The key element is the Modified Various Search Optimization (MVSO) algorithm 

that is capable of identifying the best placing of UAV to use minimum energy input and achieve 
maximum coverage and the quality of signal. The research study starts by analysing the problem, 

developing the scenarios, designing the algorithms and ending with performance assessment through 

MATLAB-based simulations. The approach to the methodological flow is based on multi-objective 

optimization principles, where all of the performance measures--coverage, energy, and SNR--are 

accounted during the optimization. 

Phase 1: Problem Analysis and Requirement Identification 

The first phase is an overall review of the UAV-based D2D communication issue in the 5G networks. 
Among them, it is possible to study the limitations of currently available UAV localization approaches, 

calculate physical constraints of UAV operation, and define important network performance indicators 

within the context of D2D communication. Such factors as urban topology, user distribution, flight 

restriction of UAV, and characteristics of radio propagation are considered with the purpose of 
establishing realistic simulation parameters. During this stage, various communication models get 

actualized including device-to-device as well as device-to-base station. Particular concern is the battery 

limitation since energy efficiency is one of the key measures, and mobility patterns of end users that 

define ideal positions of UAVs in dynamic environments. 

Phase 2: Scenario Creation and Simulation Environment Design 

The next stage after the problem definition is the simulation scenarios design imitating urban 
communication settings as much as possible. The simulation setting merges three-dimensional spatial 

modeling and has different building densities, obstacles as well as distribution patterns of the users. The 

model of user mobility is of a random waypoint with clustering behaviour that reflects real world post 

disaster or event based scenarios where the density of the users change across zones. UAVs are 
represented by mobile aerial nodes that can modify position in real-time in accordance with network 

requirements. The parameters in the simulation are chosen to simulate realistic conditions of operation in 

5G such as the frequency bands, allocation of bandwidth, and the modeling of path loss at low heights of 
aerial cars. Several UAV deployment formations are also specified in this stage, i.e. circular, triangular 

and adaptive positioning strategies, to enable the comparison of localization efficiency. 

Phase 3: MVSO Algorithm Development and Integration 

The main idea of this study is how to come up with the Modified Different Search Optimization (MVSO) 
algorithm. MVSO is an extension of the simple Various Search Optimization (VSO) framework that adds 

2 important elements: adaptive inertia weighting and chaotic mutation operator. Adaptive inertia 

weighting dynamically balances the explorationexploitation tradeoff over iterations so that the algorithm 
overexplores at the beginning and under weighs at the end. Chaotic mutation operator applies appropriate 

chaos in the solution space to avoid the early convergence and better the capability of the algorithm 

getting out of local optima. Instead, the optimization problem is formulated as a multi-objective function, 
involving three major objectives, i.e., it focuses to maximize the coverage ratio, reduce the total energy 

consumption and, maximize the average signal-to-noise ratio (SNR). The composite fitness is assigned 

different weight values to each objective based on the scenario as it allows specific prioritization. 

Phase 4: Simulation Implementation 
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As soon as the algorithm has been completed, it is applied to MATLAB 2023a. The simulation is run on 

discrete time steps updating UAV locations, user associations and performance measures in each step. 
The UAV energy model considers consumption of communication and propulsion energy as well, and 

there is a recharging protocol connecting UAVs with the nearby charging station once the capacity of the 

battery drops below the value of 20%. These SNR figures are computed through the decibel scale based 

upon the path loss, fading and interference phenomena calculated by the communication model. Several 
test cases are executed in order to analyze the algorithm in terms of different numbers of UAVs, user 

density, and their mobility speeds. Performance of the MVSO is compared to base-line algorithms like 

Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) so that it is possible to quantitatively 

compare convergence speed, solution quality and robustness. 

Phase 5: GUI-Based Visualization  

A Graphical User Interface (GUI) is designed in MATLAB where results on the UAV trajectories, 

coverage area and energy consumed will be viewed in real time. Such an interface makes it possible to 
intuitively learn how positioning of UAV readjusts dynamically to changes in networks. The GUI shows 

the geographic design of the users, the routes of the UAVs, and the coverage area of the signals as well as 

numerical results of the most important performance indicators. These aspects of performance, such as 
average coverage ratio, mean SNR values, PAE etc, are extracted as part of post-simulation analysis. The 

stability and optimization efficiency of MVSO relative to the other algorithms are depicted by the use of 

the convergence plots. 

Validation and Performance Metrics 

The validity of the suggested methodology is evidenced by the comparative analysis made with the help 

of numerous performance indicators. The most important are the coverage ratio (number of users served/ 

total number of users), milliamp-hours (mAh) of energy consumption, average SNR in decibel, along 
with the number of iterations to find near-optimal solutions of convergence. All the metrics are measured 

at the same simulation conditions of MVSO, PSO and GA. This will allow us to know that any 

improvement, which is observed, will be a result of the algorithm improvements. Further, sensitivity 
analysis is carried out by modifying the weights of the multi-objective fitness function to determine the 

influence of the performance to prioritize different objectives. 

Ethical and Practical Considerations 

This study determines its topics as simulation-based; however, on the issue of UAV deployment in their 
practical applications, ethical elements are considered. The UAV assisted networks should also satisfy the 

aviation policies and the privacy policies as well as the spectrum licenses. Moreover the limitations of the 

practice involved in UAV; the size dependant on payload weight, exposure to the wind, and safety 
procedures are also known to be possible relevant factors of real world applicability. These are the 

considerations that drive the simulation parameter design so that the results do not render useless to any 

operational scenarios. 

RESULTS  

Simulation Setup and Parameterization 

The Matlab 2023a environment of the simulation of the Modified Various Search Optimization (MVSO) 

algorithm has been set up to represent the actual situation of the 5 G Device-to-Device (D2D) 
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communication in an urban environment. All of the simulation parameters have been summarized in 

Table 1 as follows including simulation area, type of environment, propagation model, carrier frequency, 
bandwidth, and the height of the base station. The selection of 3.5 GHz mid-band frequency is the 

solution that implies the balance of the coverage and capacity concerning the rest of the world that is 

deploying 5G. Rician fading mode was used in UAV-to-ground transmissions and path loss mode was 

chosen as per 3GPP TR 36.777 according to low-altitude aerial platform radiation. These environments 

mean that the performance outcomes are also extrapolated to real deployment. 

Table 1. Simulation Parameters 

Parameter Value Description 

Simulation Area 2000 m × 2000 m × 200 m Urban 3D space with low-rise and high-rise 

buildings 

Simulation Duration 600 s Total simulation time for each run 

Time Step (Δt) 0.1 s Position and state update interval 

Number of Runs 20 Independent runs for statistical averaging 

Environment Type Urban, Dense Urban, 

Suburban 

Scenarios for path loss and obstacle modeling 

Path Loss Model Urban Macro NLoS & LoS Based on 3GPP TR 36.777 standard 

Carrier Frequency 3.5 GHz Typical mid-band 5G deployment 

Bandwidth 100 MHz Allocated spectrum for D2D communication 

Propagation Model Rician fading with K-factor = 

6 dB 

Models UAV-to-ground links 

Base Station Height 30 m Fixed gNB for backhaul communication 
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Figure 1 Coverage Ratio Comparison 

 

Table 1 is directly related to Figures 5 and 6 further in this section since environment setting and the 

system parameters influence the performance (especially energy consumption and coverage) over user 

densities and UAV deployments. 

UAV Hardware and Flight Characteristics 

Table 2 entails UAV specifications like the altitude range, UAV speed, battery size, power consumption 

during hovering and locomotion, and communicating power. These parameters have been chosen that 

reflect the constraints that medium-sized quadcopters platforms performing network relay operation face, 
in a realistic manner. Operational conditions of the UAV (especially the 6000 mAh LiPo battery and 

recharge rate at 20 percent) are critical in determining the energy efficiency results in Table 6 and Figure 

2, the energy constraints have a direct bearing on the frequency that UAVs have to reposition or go to 

charging stations. 

Table 2. UAV Parameters 

Parameter Value Description 
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UAV Model Quadcopter (Custom 

Simulation) 

Generic model for performance 

analysis 

Flight Speed Range 5–20 m/s Adaptive speed control during 

repositioning 

Maximum Altitude 200 m Restricted by aviation regulations 

Minimum Altitude 50 m Ensures safe clearance over urban 

obstacles 

Hover Power Consumption 120 W Electrical power draw during idle hover 

Movement Power 

Consumption 

150 W Power draw during horizontal or 

vertical flight 

Communication Power 10 W Transmit power for D2D relay 

Battery Capacity 6000 mAh @ 22.2 V LiPo battery model 

Recharge Threshold 20% Triggers return to nearest charging 

station 

Recharge Time 15 min Full recharge from empty battery 
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Figure 2 Energy Consumption Comparison 

 

The variations in hover and movement power draw (120 W vs. 150 W) also reflect the arguments 

concerning the opportunities that MVSO trajectory optimization can afford to result in significant savings, 

i.e. minimized excess repositioning exercises leads to the UAVs operating in useful hover modes more 

often than in consumption-hazardous flight modes. 

Network and User Parameters 

The network and user related settings are presented in Table 3 and include the number of users (50, 100 

and 150), distribution pattern, mobility model, D2D interference range and interference model. The 
Random Waypoint Mobility Model Clustering model is good in modeling post disaster or event based 

urban traffic where users are unevenly distributed. Such settings directly affect the coverage ratio outputs 

in Table 5 and Figure 1 since the clustered users demand repositioning of UAV strategically to maximize 
the served devices. Moreover, the SNR level of 15 dB guarantees that the performance is measured both 

in terms of physical connection and quality of communication. 
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Table 3. Network and User Parameters 

Parameter Value Description 

Total Users 50, 100, 150 Varying densities for performance testing 

User Distribution Random Clustering High-density clusters with sparse regions 

Mobility Model Random Waypoint + Clustering Reflects urban pedestrian and vehicle 

movement 

Speed Range 0–1.5 m/s (pedestrian), 5–10 m/s 

(vehicle) 

Variable mobility speeds 

D2D Range 150 m Maximum direct link distance 

Interference 

Model 
Co-channel interference Simultaneous D2D and UAV 

transmissions 

Noise Power –104 dBm Thermal noise at receiver bandwidth 

SNR Threshold 15 dB Minimum requirement for successful D2D 

link 

User Device 

Power 

200 mW Transmit power for D2D links 
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Figure 4 Average SNR Comparison 

 

Optimization Algorithm Settings 

The parameters specifications of MVSO, PSO and GA are described in Table 4. Markedly, MVSO 

features the adaptive inertia weighting and a chaotic mutation operator so as to have a contemporaneous 
balance between exploration and exploitation. As compared to PSO having fixed inertia and GA having 

fixed mutation rate, this parameter is variable and as such this led to the high convergent rates as 

illustrated in Table 8 and Figure 4. The weights of the fitness function (x, y, z) were maintained the same 

in different algorithms in order to make comparison fair and between-algorithms only. 

Table 4. Optimization Algorithm Parameters 

Parameter MVSO PSO GA 

Population Size 50 50 50 

Iterations 100 100 100 

Inertia Weight Adaptive (0.9 → 0.4) Fixed (0.7) N/A 
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Cognitive Coefficient 2.0 2.0 N/A 

Social Coefficient 2.0 2.0 N/A 

Mutation Rate Chaotic-based 0.05–

0.15 
N/A Fixed 0.05 

Crossover Rate N/A N/A 0.8 

Termination Criteria Convergence < 0.001 Convergence < 

0.001 

Convergence < 

0.001 

Fitness Function Weights (α, 

β, γ) 

(0.4, 0.3, 0.3) (0.4, 0.3, 0.3) (0.4, 0.3, 0.3) 

 

Figure 4 Convergence Speed 
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Coverage Ratio Analysis 

Performance of coverage ratio is included in Table 5 and Figure 1, depending on the UAV quantities and 
the density of users. MVSO outperforms PSO and GA in all the cases and the maximum improvement is 

seen when only one UAV is used and there are 50 users where MVSO reaches a coverage of 91.2 percent 

as compared to 76.5 percent of PSO and 73.4 percent of GA. This is an 19.2 percent improvement over 

the best baseline. 

Table 5. Coverage Ratio Results (%) 

UAV Count Users MVSO PSO GA MVSO Gain over Best Baseline (%) 

1 50 91.2 76.5 73.4 +19.2 

1 100 88.5 75.2 72.8 +17.7 

1 150 84.6 71.1 69.9 +15.8 

2 50 96.0 84.3 81.5 +13.9 

2 100 94.2 82.4 80.1 +14.3 

2 150 91.0 78.9 77.0 +12.1 

3 50 98.4 89.7 88.0 +9.7 

3 100 97.1 86.9 84.7 +11.7 

3 150 95.3 84.2 83.1 +13.1 
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Figure 5 MVSO Coverage Ratio Heatmap  

 

As Figure 1 shows, the ratio of the coverage with the UAVs number rises up with the number of UAVs in 

all of the algorithms, however, MVSO portrays a distinct superiority considering the fact that it allows 

changing the UAVs position of the network in real-time basis depending on how they are clustered by the 
user. The usefulness of this adaptive response is specifically advantageous about greater user density (150 

users), since there is a greater coverage deterioration in both PSO and GA at greater user densities 

because suboptimal UAV positioning is often more significant than that at lower user density. 

Energy Consumption Performance 

Table 6 and Figure 2 show that the energy consumption due to a run is about 20 percent lower in MVSO 

compared to PSO or GA in all settings. As an example in a scenario wherein two UAVs will connect 100 

users, MVSO will consume 1835 mAh, as opposed to 2295 mAh (PSO) and 2350 mAh (GA). 

Table 6. Energy Consumption Results (mAh) 

UAV Count Users MVSO PSO GA Reduction vs Best Baseline (%) 

1 50 920 1150 1205 20.0 

1 100 940 1180 1245 20.3 
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1 150 965 1215 1270 20.6 

2 50 1795 2240 2300 19.8 

2 100 1835 2295 2350 20.0 

2 150 1880 2365 2430 20.5 

3 50 2680 3370 3445 20.4 

3 100 2740 3450 3560 20.6 

3 150 2815 3540 3650 20.5 

 

Figure 6 MVSO Energy Consumption Heatmap 
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As shown in Figure 2, the amount of energy that is required does indeed rise in tandem with the number 

of UAVs out in the field because they are, after all, in motion; however, optimizing their pathways using 
MVSO eliminates superfluous movement no longer relocating their assigned zones, resulting in a steady 

energy demand which remains lower. These findings embrace the twofold merit of MVSO namely up-

scaling in coverage without causing undue energy expenses. 

Average SNR Improvement 

Table 7, Figure 3 reveals that MVSO leads to a remarkable improvement in average SNR, achieving 

standard gains of about 10- 11 dB with respect to PSO and GA in all conditions. Considering an example 

of having three UAVs-with 100 users, MVSO attains 44.6 dB, whereas PSO has 34.0 dB, and GA has 

33.2 dB. 

Table 7. Average SNR Results (dB) 

UAV Count Users MVSO PSO GA Gain over Best Baseline (dB) 

1 50 42.1 31.0 30.3 +11.1 

1 100 41.8 30.2 29.4 +11.6 

1 150 40.6 29.7 29.0 +10.9 

2 50 43.7 32.8 32.1 +10.9 

2 100 43.2 32.5 31.8 +10.7 

2 150 42.8 31.9 31.2 +10.9 

3 50 44.9 34.2 33.6 +10.7 

3 100 44.6 34.0 33.2 +10.6 

3 150 44.2 33.8 33.0 +10.4 
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Figure 7 Coverage Comparison for 2 UAVs  

 

As illustrated in Figure 3, SNR gain is steady in terms of UAV quantity and suggests that MVSO 
localization scheme will have better line-of-sight connections and reduced interference consistently. Such 

improved performance provides direct benefit to better-quality of D2D communication, particularly to 

dense urban applications, where multipath fading and sensitivity to obstactions are critical. 

Convergence Speed Evaluation 

As seen in Table 8 and Figure 4, the convergence characteristic of MVSO is 25-35 percent faster to 

converge to near optimal than PSO and GA. As another example, when two UAVs were used to serve 100 

users, MVSO achieves convergence after 33 iterations whereas PSO and GA require 44 and 47 iterations. 

Table 8. Convergence Iterations to Near-Optimal Solution 

UAV 

Count 

Users MVSO Iterations PSO Iterations GA Iterations Speedup vs Best Baseline 

(%) 

1 50 26 35 38 25.7 

1 100 28 37 39 24.3 
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1 150 29 38 40 23.7 

2 50 31 42 45 26.2 

2 100 33 44 47 25.0 

2 150 34 45 48 24.4 

3 50 36 48 51 25.0 

3 100 37 49 52 24.5 

3 150 38 50 53 24.0 

 

Figure 8 SNR Comparison for 2 UAVs 
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The rapid initial falling and initial stabilization of the MVSO curve in Figure 4 underlines the efficiency 

of intuitive inertia and chaotic mutation in avoiding local optimum and speeding of the search process. In 
real-time applications or environments, or those with rapid change, this attribute is especially important 

because the quicker one can optimize, the more positive the result is on the user side. 

Heatmap Visualization of Coverage and Energy 

Figure 5 shows heat map of MVSO coverage ratio as a measure of all UAV counts and user densities. The 
darker the blue the greater the coverage with 3 UAVs covering 50 accessible users (98.4 percent) being 

the best performing configuration. 

Figure 6 contains the respective energy consumption heatmap: lighter red indicates fewer practices of the 
same. The balance between maximum coverage and minimum energy occurs when two UAVs are used 

together with medium user density (100 users), which proves the correctness of the idea that there are 

diminishing returns to efficiency associated with an excessive deployment of UAVs. 

Grouped Bar Comparisons for Coverage and SNR 

Figure 7 shows a performance comparison of coverage of two UAVs with regard to all user densities. The 

edge is consistently more than that of MVSO with a maximum of 150 users, which proves beyond a doubt 

that MVSO is superior in hard network loads. 

The same comparison is conducted by figure 8 regarding SNR. There is also a significant difference 

between MVSO and other densities, which confirms that the better location of MVSO does not only serve 

an increased number of users, but it does so with an improved level of link quality. 

DISCUSSION 

The findings achieved in the research article are quite strong to argue that the Modified Various Search 

Optimization (MVSO) algorithm displays a steady and notable increase compared to Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA) in localizing UAV communication in 5G Device-to-
Device (D2D) communications. The resulting coverage ratio enhancement, energy efficiency, average 

SNR, and convergence rate improvement are seen to be relevant to the research problem which based 

such findings on the constraints of the currently available UAV positioning techniques in the dynamic 

high-density urban setting. 

Interpretation of Coverage Improvements 

The effectiveness of MVSOs coverage performance, as much as 19.2 percent greater than PSO and GA, is 

based on the suggestion of adjusting location of UAVs accordingly with varying distributions of users by 
use of adaptive inertia weighting and chaotic mutation operators. Such adaptive method enables the 

UAVs to behave in relation to clustered user mobility which is, in many cases, ignored when using the 

static or less adaptive algorithms. An analysis of mobility patterns in non-LoS areas was done previously 
by Lyu et al. [57], stating that the UAV placement strategies should constantly change to reflect the 

mobility patterns and ensure high coverage at least in dense urban areas. On the same note, Zhao et al. 

[58] were able to demonstrate that the mobility-aware UAV deployment enhances the performance of the 
network as compared to those deployed in a static manner. These findings are agreeable with the results 

of this study and further demonstrate that adaptive meta-heuristics have the capability of achieving even 

better improvements without the need to do trajectory planning manually. 
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Energy Efficiency Considerations 

UAV-based communication systems have a significant constraint with energy consumption because 
endurance capacity in operations is directly affected by the capacity of batteries. The fact that MVSO 

decreases energy consumption by roughly 20% in comparison to PSO and GA is an indicator that the 

optimized localization will not only improve connectivity but also increase UAV service time. This is in 

line with Sharma et al. [59], who observed that optimized UAV routes have a drastic effect in reducing 
propulsion energy expenses. Also, Yaliniz and Yanikomeroglu [60] claimed that energy-aware 

deployment is equally vital as coverage optimization in order to maintain the necessary UAV operation 

time in 5G networks. The energy consumption in the fitness function of MVSO helps to achieve this dual 

goal as the algorithm will now generate energy-considerate and spatially efficient forms of deployments. 

Link Quality and SNR Enhancement 

It is of great importance that with MVSO, as compared to PSO and GA, SNR improved by 1011 dB, 

which is significant because the higher SNR is directly translated into better data throughput and lower 
packet error rate in D2D communication. According to the previous research conducted by Shakoor et al. 

[61] and Zeng et al. [62], UAV altitude, path, and horizontal location play a vital role in determining the 

quality of a link because of changes in LoS likelihood and path loss. The coverage and SNR are implicitly 
balanced in MVSO localization strategy through weighting both in the fitness function. This two 

optimizations avoid the situation of a UAV that may optimize the coverage at the sacrifice of low link 

quality which is a drawback within algorithms that optimize the coverage metrics only [63]. 

Convergence Speed and Computational Efficiency 

In cases where time constraints are critical to success (disaster recovery and events using large numbers 

of UAVs, for example) acceleration toward nearly optimum UAV member locations is critical. The 

reason why MVSO has 25-35 percent faster convergence than PSO and GA move on solid grounds 
proving its applicability in such settings. The strength of its adaptive inertia weighting, global exploration 

early on in the optimization process and moving towards local exploitation as the optimization converges 

makes this possible. The chaotic mutation operator also helps in getting out of local optima which tends 
to happen with swarm-based algorithms in the difficult multimodal search space [64]. The same effect of 

acceleration has been experienced in hybridized algorithms including the hybrid firefly-PSO model 

documented by Yang et al. [65] and whale optimization algorithm enhanced by chaos reported by Hu et 

al. [66]. 

Comparative Insights with Related Optimization Strategies 

Although the PSO and GA have enjoyed wide-scale use in the area of UAV path planning and 

deployment issues, they may not perform well in dynamic environments as a result of early convergence 
and a lack of flexibility [67]. Zheng et al. [68] experiment demonstrated the propensity of PSO to 

languish in subsequent iterations without an adaptive means and pointed to slow convergence of the 

population in the case of large and complex search spaces with GA. MVSO combines adaptive and 
chaotic functions and, in such a way, overcomes both of these weaknesses. This study indicates in its 

results that these kinds of enhancements enable MVSO to hold diversity within its solution pools longer, 

resulting in stouter final deployments particularly in the higher density user conditions. 

Practical Implications for 5G D2D Networks 
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In regards to the practical applicability of UAVs to improve D2D communication, it is not only applicable 

to emergency or even short term events only; it can also apply in the network densification plans in the 
5G and beyond. The Portability of MVSO qualifies it to be deployed on an ad-hoc basis to over congested 

hot spots in urban areas, to mass events, or to geographical areas where network coverage is temporarily 

lost. This can be compared with what was stated by Nguyen et al. [69], who noted the increased use of 

UAV-aided base stations in elastic networks. In addition, energy savings and increased convergence 
shown in this work have the potential to be applied to real-time UAV fleet management systems in which 

an optimization should be continuous to meet the changes in the network [70]. 

Limitations and Directions for Future Work 

Although there is positive potential associated with it, outcomes of this study are founded on simulation-

based analyses on MATLAB, which implies that other evils of implementation (i.e., wind effects, GPS 

inaccuracies, regulatory restrictions of using UAVs, and complexities of coordination between multi-

UAVs) were not properly considered. Previous ground tests, like those performed by Fotouhi et al. [71], 
denote that the external parameters may severely affect the efficiency of the UAV operations. Future 

work should therefore combine MVSO with real-time sensor state feedback systems and move to mixed 

surfaces and beyond-line-of-sight settings. On top of that, the possibility of incorporating MVSO and 
decision-making based on reinforcement learning, as offered by Challita et al. [72], may take predictive 

UAV repositioning even further to predict the behavior of changing and unpredictable conditions in the 

network. 
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