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ABSTRACT 

Statistical Quality Control (SQC) is a structured methodology used to monitor, evaluate, and control 

industrial production processes to maintain consistent product quality and operational efficiency. Control 

charts are essential tools widely utilized in business to maintain process variability within acceptable 
limits. The CUSUM chart is the most effective standard type of control chart, serving as a memorial 

chart. This study proposes a novel configuration for CUSUM Charts based on the utilization of auxiliary 

information through a limited number of estimators. It is a collaborative effort to implement traditional 

location measures to enhance ratio estimators using auxiliary variable information. We have proposed a 
set of ratio estimators for finite population mean utilizing information from auxiliary variables through 

both standard and unconventional measures of central tendency. We have amalgamated the tri-mean, 

Hodges-Lehmann estimator, mid-range, and deciles mean of the auxiliary variables to facilitate the 
objective. The attributes associated with the proposed set of ratio estimators are evaluated using mean 

square error. Moreover, resilience to extreme observations (outliers) is an additional attribute of the 

proposed estimators. 

Keywords: Auxiliary information; performance measures; control charts; Ratio Estimators; Conventional 
measures; Non-Conventional (robust) measures. 
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INTRODUCTION 

Statistical Process Control (SPC) plays a pivotal role in maintaining product quality and operational 
efficiency across manufacturing and service industries. Among the foundational tools of SPC, the 

Shewhart control chart, introduced by Walter A. Shewhart in the 1920s, remains one of the most widely 

used techniques for monitoring process stability and detecting out-of-control conditions (Montgomery, 

2020). The classical Shewhart chart operates by plotting sample statistics typically the sample mean and 

standard deviation over time, with control limits set at ±3 standard errors from the process mean. These 

limits are designed to distinguish between common-cause variation (inherent to the process) and special-

cause variation (indicative of assignable disruptions). 

Despite its historical significance and widespread adoption, the conventional Shewhart chart suffers from 

a critical limitation: it relies heavily on the assumptions of normality, homogeneity, and absence of 

outliers. In real-world industrial environments, these assumptions are frequently violated due to 

measurement errors, instrument malfunctions, human error, or transient process disturbances. Under such 
conditions, the use of classical estimators (mean and variance) can lead to inflated control limits, 

increased false alarm rates, and delayed detection of actual process shifts (Riaz et al., 2023; Abbasi & 

Miller, 2013). 

To address these challenges, researchers have increasingly turned to robust statistical methods that are 

resistant to contamination and non-normality. Robust estimators minimize the influence of extreme 

observations while maintaining high efficiency under ideal conditions. In recent years, robust alternatives 
such as the median, tri-mean, Hodges-Lehmann estimator, mid-range, and quartile deviation (QD) have 

been proposed as replacements for classical location and scale measures in control charting applications 

(Riaz & Abbas, 2021; Khan et al., 2022). For instance, Riaz et al. (2023) demonstrated that control charts 

based on robust measures exhibit superior performance in terms of Average Run Length (ARL) and 
Relative ARL (RARL) under contaminated data environments. Similarly, Abid et al. (2021) developed 

robust EWMA and CUSUM charts using trimmed means and QD, showing enhanced sensitivity to small 

and moderate shifts in the presence of outliers. 

Building on this growing body of research, this study proposes a new class of Shewhart-type control 

charts that utilize robust estimators of location and dispersion derived from auxiliary information. 

Specifically, we incorporate non-conventional measures such as the tri-mean, mid-range, and quartile 
deviation to improve the accuracy and reliability of process monitoring. By leveraging auxiliary variables 

correlated with the study variable, our approach enhances estimator efficiency and reduces sensitivity to 

measurement error, a common issue in industrial data collection (Singh & Karan, 2021; Fuller, 2009). 

Some Important Notations 

Many researchers have discussed the tricks for the structure of effective estimators in favor of the 

population mean. Assume 1 2 3{ , , ,....., }NZ Z Z Z Z that several population units and the sample size n is 

taken from this population as a simple random sample without replacement (SRSWOR), provided n<N. 

Study n pair of observations  1, , 1,2,3......iy x i n  for the study and supporting variable, respectively. To 

find the bias and mean squared error (MSE) of the estimators, we study the following results 
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such that 

0( ) 0E e  , 1( ) 0E e  ,
2 2

0( ) yE e C ,
2 2

1( ) xE e C   and 0 1( ) yx y xE e e C C  

Where 
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2 2 1 2( )y yC Y S ,
2 2 1 2( )x xC X S
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S N x X
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2 1
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yx i i
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S N y Y x X



     ,
1( )yx y x yxS S S   

Where
2

yS  and 
2

xS  are the variances of y and x respectively. 

Well-known Estimators 

A sample survey frequently incorporates supplementary demographic data in contemporary practice. We 
obtain supplementary information from several sources, including regression, ratios, and products. To 

enhance the efficiency of the SRSWOR sample, the average ratio and regression estimators are frequently 

employed when the correlation between the study and auxiliary variables is positively associated under 
specific conditions. Furthermore, the information addresses various estimators available and the category 

of estimators derived from average populations. In a sample study, supplementary variable information is 

typically employed to enhance the accuracy of calculating the average population and the overall value of 
the survey variables. In specific research, the correlation between population and auxiliary variables may 

be significant. This introduction presents successful estimates of auxiliary variables for determining the 

average characteristics of a quality sample, articulated in terms of Bias and MSE when a replacement 

sample is utilized or the study of Shewhart control charts, we use estimators of Irfan et al. (2018). Some 
selected estimators of Irfan et al. (2018) are given below: 

The simple population mean of simple random sampling is given as: 

1

n

i

y

Y
n




= 1( )M say
…………………………………………………………………

(1)                                                                                                             

In case of simple random sampling without replacement (SRSWOR), the sample mean SRSy  is used to 

estimate population mean Y , which is an unbiased estimator. 

The MSE of simple random sampling is given below: 

2 2ˆ ˆ( ) ( ) yMSE Y V Y Y C    … … … … … … … … … … … … … … … … … (2) 

Cochran (1940) has presented the ratio estimator for estimating the population mean  Y  of the study 

variable Y as:  

ˆ , 0R

X
Y y x

x

 
  

 
 =   2 ( )M say         … … … … … … … … … … … … … … … … … (3) 
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The bias and MSE of the ratio estimator to the first-degree of approximation are given below: 

2ˆ( ) ( )R x yx x yB Y Y C C C    

and 

2 2 2ˆ( ) [ 2 ]R y x yx y xMSE Y Y C C C C     ……………………………………………(4)                                                                                                        

Similar to ratio estimation, linear regression estimation should use secondary variables that are associated 

with the dependent variable to increase accuracy. When considering the association between, we can 
understand that the correlation is almost linear, but the line does not cross the origin. This is an estimate 

based on linear regression from to, and not on the ratio of two variables. Watson (1937) used a linear 
unbiased regression estimator as: 

Re

ˆ ( )gY y b X x   = 
3 ( )M say …………………………………………………………………

(5)                                                                                                             

The MSE of the linear regression estimator up to first-degree approximation is  

2 2 2

Re

ˆ ˆ( ) [1 ]g y yxMSE Y Y C    ……………………………………………………………(6)                                                                                                                          

Bahl & Tuteja (1991) has offered the product exponential-type estimators for the population mean. The 
product exponential-type estimator for the population mean 

,

ˆ expBT Pe

x X
Y y

x X

 
  

 
=

4 ( )M say …………………………………………………………………
(7)                                                                                                              

The Bias of the product exponential-type estimator for the population mean is 

2

,

ˆ( )
2 4

x
BT Pe yx y x

C
Bias Y Y C C



 

  
 

                                                                          
………………

(8)                                                                                                              

The MSE of the product exponential-type estimator up to first-degree approximation for the population 
mean is 

2 2 2

,

ˆ( ) [4 4 ]
4

BT Pe y x yx y xMSE Y Y C C C C


  
……………………………………………

 (9)                                                                                         

…
 (9)                                                                                          

Approaches to express the parameters 

Shewhart-type control charts consist of three parameters: lower control limit (LCL), center line (CL), and 

upper control limit (UCL). We have two methods to define these parameters: the 3-sigma limits technique 
and the probability limit approach. For symmetric distributions, we employ the 3-sigma limit strategy, 
whereas for asymmetric distributions, we utilize the probability limit approach. 
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Probability Limits Approach 

For the existing 1M  chart, we define probability approach as: 

1lLCL M With 1 1( )n l lp M M    

1uUCL M With 1 1( ) 1n u up M M     

Where 1 u   and np  be the cumulative distribution function for a current value of n. 

1 1
ˆ /

l ylLCL M M c n   with 1( )n lp C C    

1 1
ˆ /

u yuUCL M M c n   with ( ) 1n u up C C     (10)                         

Similarly, we will find probability limits approach for
2M , 

3M  and 
4M  respectively. 

Sigma Limits Approach 

The usual 3-sigma control limits with the parameters of the chart are given below: 

1 1

1

1 1

3

3

M

M

LCL M

CL M

UCL M





  


 
  

(11) 

By using Eq. (10) in Eq. (11), we get 

1 2

1

1 2

ˆ3 /

ˆ3 /

y

y

LCL M k n

CL M

UCL M k n





 


 


  

 

Where 𝑘2 is known as standard error.  

When selecting the structure of control charts for both the probability approach and the 3-sigma technique 

at a specific level of significance, we prioritize sample statistics that account for the temporal order of 

samples. Therefore, we conclude that if all samples fall within the control boundaries, it is evident that 
there is no shift in the process mean level, which remains stable over time. If the process mean is 

unstable, an assignable cause exists within the method, resulting in a change at the process mean level. 

Irfan el al. (2018) proposed family of estimators. Generalized class of difference-cum-exponential-type 
estimators of finite population mean is given below:  

1 2

( )ˆ exp exp ( ) exp
2 ( ) 2

p

y X x x X X x
Y h X x h y

X x x X X x



 

         
           

           
(12) 
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Where 1k and 2k  are appropriate weights. ( 0)  and  can be the values of a known traditional and non-

traditional parameters or a constant function of the secondary information x . (
ˆ

pY  For 
5M  and 

6M  (say)). 

Special cases 
By determining different constants or known constants additional variable population parameters in place 

of  and  in eq. (12), we can have various best estimators. In this research, we are using two of them, 

which are listed below  

1. Case: I          DQ   and MT   

2. Case: II         DQ  and RM   

By using Eq. (13) in Eq. (12), the proposed estimators can be expressed as

 
1 1

10 1 1 1 1
1 1 2 0 1 1

(1 )ˆ exp 1 exp 1 (1 ) exp (1 )
2 2 2 2 2

p

y e e e e e
Y h Xe h y e e e 

 


           
                             

(13) 

where 

2( )

X

X




 



is well-known measure. 

Solving Eq. (13) up to first-degree approximation, we have 

2
2 2 2 2 21

0 1 1 2 2 0 1 0 1 1 1 2 1 2 0 1 1 2 1

3 3ˆ

8 2 2
p

Ye
Y Y Ye h Xe h Y h Ye Ye Ye e h Xe h Ye h Ye e Ye h Ye                   (14) 

By applying expectations on both sides of above equation, the bias of suggested class of estimators is: 

2 2 2

2 1 2 2

1ˆ( ) [8 {8 (1 12 12 )} 8 (1 ) ]
8

p x x y yxBias Y h Y C h X Y h Y C C h            (15) 

By squaring and applying expectations on both sides of Eq. (15) and after ignoring higher-order 
approximation, we have 

  

1 1ˆ 2 2 2 2 2 2 2 2 2 2( ) 4( ) 4 5 4 16 (1 )
1 1 2 2 2 24 4

2 1 2
2 1 2

MSE Y C Y Xh Y Y Xh h Y h Y h C h
p x y

Y C C h Y Xh Y h
yx x y

     

  

     
                   

    
    

(16) 

By differentiating Eq. (16) with respect to 1h , we get 

The optimal value of 1h is: 
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 

 

2 2 2 2 2

1( ) 2 2

1 1
2 2 2 2 1

4 4

2 1 1

yx y x x yx y x yx y

opt

x y yx

Y C C C C C C

h
XC C

       

 

     
             

     
    
 

 

By differentiating Eq. (16) with respect to 2h and put the equation equal to zero 

The optimal value of 2h is: 

 

 

2 2 2 2

2( ) 2 2

1
2 1

4

4 1 1

x y yx

opt

y yx

C C

h
C

  

 

  
     

  
    
 

 

By putting optimal values of 1h  and 2h  in Eq. (17), we can get the minimum MSE of the proposed 

generalized class of estimators as: 

 

 

2 4 2 2 2 2 2

min 2 2

1 1
4 1 1

4 4ˆ( )
4 1 1

x yx x y

p

y yx

Y C C C

MSE Y
C

     

 

     
           

     
    
 

(17) 

After interpretations, the modified form of above equation can be written as: 

min Re 1 2

ˆ ˆ( ) ( ) [ ]p gMSE Y MSE Y R R   (18) 

Where 

 

 

2

2 2 2 2 2 2

1 2 2

1
4 1

4

16 1 1

x yx y

y yx

Y C C

R
C

  

 

  
    

  
  
 

 

And 

 

 

2

2 2 2 2 2 2 2 2

2 2 2

1 1
3 8 1

4 4

16 1 1

x x yx y

y yx

Y C C C

R
C

   

 

    
       

    
  
 

 

Both are always must be positive measures. 

Simulation study 

This study employs computerized numerical simulations to determine the appropriate control charts for 

enhancing the process average. The Monte Carlo simulation approach is employed to compute the ARL 
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values corresponding to various shift magnitudes. Random numbers have been created utilizing the R 

console statistical software. We have utilized many statistical packages, including bivariate and 
multivariate normal distribution packages, employing R software. 

Simulations Details 

Simulation Steps For In-control 0ARL  And Out-of-control 1ARL  

If the in-control 0ARL  and out-of-control 1ARL  are likely to be known during simulation method, then 

the steps to the simulation process are given below: 

1. An out-of-control sample of 100000 is generated according to the specified distribution limits by 
generating multivariate normal random numbers. 

2. By fixing the value of ARL  at 371. 

3. We fixed the value of correlation coefficient at yxρ =0.3, yxρ =0.6, yxρ =0.90. 

Consider 0

1
alpha

ARL


  

4. Fixed the lower and upper probability point.  

5. Lower Probability Point is
2

alpha
LProb  .  

6. Upper Probability Point is 
1

Pr
2

alpha
U ob


 . 

7. Standardized the mean and variance of multivariate normal distribution with mean =10 and 

variance = 1. 
8. Construct existing and proposed estimator in term of finding control limit.  

9. Now generate Large random number (sim=100000) for finding control limits. 

10. Compute the upper and lower control limit (LCL, UCL) for existing and proposed estimators. 

11. Now calculate out-of-control ARL for sim with shift as 𝛿 = 0.0, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 
2.50 and 3.00. 

12. Based on the control chart criteria, it is determined whether this sample results in an out-of-

control signal.  
13. If the sample output results in an out-of-control indication, than the sample number is make a 

note as the run length for that simulation and if the sample does not result in an out-of-control 

signal, returns to Step 1.  
14. Steps 1-4 are repeated until the number of simulations (sim) is reached. The result is sim run 

lengths.  

15. The normal or specified quantile of the run length distribution is reported. 

 

Simulation Steps For In-control Mean and In-Control Standard deviation 
 

Suppose the in-control mean and in-control standard deviations are to be simulated based on in-control 
initial samples (sim). In that case, the steps to the simulation process are as follows (assume a sample 

consists of n observations).  

1. Sim in-control samples of size n are created according to the specified distribution parameters of 
the in-control distribution.  
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2. The in-control average and standard deviation are calculated based on the simulated in-control 

samples.  
3. An out-of-control sample of size n is produced according to the definite distribution parameters of 

the out-of-control distribution. 

4. The average of the sample is produced and, if necessary for the specific type of control chart, the 

standard deviation is also provided.  
5. Based on the control chart criteria, it is determined whether this sample results in an out-of-

control signal.  

6. If the sample results in an out-of-control signal, the sample number is recorded as the run length 
for that simulation. If the sample does not result in an out-of-control signal, return to Step 3.  

7. Steps 1 through 6 are repeated until the number of simulations (sim) is reached. The result is the 

simulation run lengths.  

8. The average, median, or specified percentile of the run length distribution is reported. 
9. Once control charts are established, it is crucial to understand their interpretation and use in the 

event of an issue. The control charts are separated into three categories. The initial segment is 

termed “out of statistical control” for several reasons. Ensure that points that do not coincide on 
the chart are situated outside the control limits. This indicates that specific causes may alter. The 

occurrence of points beyond the regulatory limits is typically the most conspicuous circumstance. 

In the second segment, the process is evaluated, albeit ineffectively. All points are under control, 
indicating a singular cause. In the third segment, it will be noted that trends are more predictable 

and exhibit a smoother progression. This section demonstrates evidence of process enhancement 

and a reduction in variation. 

 

Performance measures and comparisons 

We may assess the performance and assessments of ARL to achieve optimal and efficient outcomes by 

employing both conventional and unconventional metrics in two manners: Shift-to-Shift Performance 

Measure and Overall Performance Measure. Monte Carlo simulation is a statistical computational 
technique that depends on repeated random sampling to derive numerical outcomes. Average Run Length 

is defined as the mean number of samples necessary for a control chart to indicate an out-of-control 

condition. Extra Quadratic Loss (EQL) is a metric that delineates the overall efficacy of a control chart. 

Relative Average Run Length (RARL) is a metric utilized to assess the performance of control charts 
comprehensively and to compare several charts within the shift range. The Performance Comparison 

Index (PCI) is defined as the ratio of the EQL to the EQL_benchmark, where the benchmark is the 
minimum value of EQL in the control charts. 

The average run length results of Shewhart chart when the in-control ARL 

Table 1: Average Run length of data set 1 at ARL=371, n=5 and 𝝆𝒚𝒙 = 𝟎. 𝟑𝟎 

Shift 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 𝑴𝟓 𝑴𝟔 

0.00 384.44 360.90 378.91 361.76 362.81 362.81 

0.25 146.81 224.56 157.68 132.23 152.61 152.61 
0.50 35.74 80.80 39.49 31.45 41.72 41.72 

0.75 10.75 29.21 13.16 9.96 13.16 13.16 

1.00 4.54 13.88 5.05 4.07 5.65 5.65 
1.50 1.59 4.17 1.61 1.44 1.71 1.71 

2.00 1.08 1.88 1.09 1.05 1.12 1.12 

2.50 1.00 1.23 1.01 1.00 1.01 1.01 

3.00 1.00 1.04 1.00 1.00 1.00 1.00 
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LCL 3.64 3.60 3.65 3.73 3.67 3.67 

UCL 6.35 6.93 6.37 6.30 6.37 6.37 

 

Table 2: Average Run length of data set 2 at ARL=371, n=5 and 𝝆𝒚𝒙 = 𝟎. 𝟔𝟎 

Shift 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 𝑴𝟓 𝑴𝟔 

0.00 384.44 360.90 367.82 359.11 361.36 361.36 

0.25 146.81 158.71 238.69 102.78 114.66 114.66 

0.50 35.74 36.35 70.19 20.06 26.05 26.05 
0.75 10.75 12.85 18.79 6.14 8.06 8.06 

1.00 4.54 5.52 6.37 2.60 3.27 3.27 

1.50 1.59 1.76 1.60 1.14 1.29 1.29 
2.00 1.08 1.12 1.05 1.00 1.02 1.02 

2.50 1.00 1.01 1.01 1.00 1.00 1.00 

3.00 1.00 1.00 1.00 1.00 1.00 1.00 

LCL 3.64 3.90 3.62 3.93 3.87 3.88 
UCL 6.35 6.40 6.37 6.10 6.17 6.17 

 

Table 3: Average Run Length of data set 3 at ARL=371, n=5 and 𝝆𝒚𝒙 = 𝟎. 𝟗𝟎 

Shift 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 𝑴𝟓 𝑴𝟔 

0.00 384.44 360.90 351.56 368.65 347.73 347.73 
0.25 146.81 30.64 151.24 27.42 43.89 43.89 

0.50 35.74 4.47 18.56 3.39 5.66 5.66 

0.75 10.75 1.55 3.27 1.26 1.73 1.73 

1.00 4.54 1.05 1.35 1.02 1.11 1.11 
1.50 1.59 1.00 1.00 1.00 1.00 1.00 

2.00 1.08 1.00 1.00 1.00 1.00 1.00 

2.50 1.00 1.00 1.00 1.00 1.00 1.00 
3.00 1.00 1.00 1.00 1.00 1.00 1.00 

LCL 3.64 4.42 4.11 4.11 4.40 4.40 

UCL 6.35 5.67 5.85 5.61 5.70 5.70 

 
 

Table 4: Average Run Length of data set 4 at ARL=371, n=10 and 𝝆𝒚𝒙 = 𝟎. 𝟑𝟎 

Shift 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 𝑴𝟓 𝑴𝟔 

0.00 355.91 342.10 342.52 335.49 363.29 363.29 

0.25 67.85 123.68 65.74 59.54 71.16 71.16 
0.50 12.09 29.54 10.60 9.83 11.74 11.74 

0.75 3.72 9.05 3.27 3.22 3.64 3.64 

1.00 1.71 4.10 1.59 1.54 1.67 1.67 

1.50 1.04 1.39 1.02 1.01 1.03 1.03 
2.00 1.00 1.03 1.00 1.00 1.00 1.00 

2.50 1.00 1.00 1.00 1.00 1.00 1.00 

3.00 1.00 1.00 1.00 1.00 1.00 1.00 
LCL 3.64 3.60 3.65 3.73 3.66 3.67 

UCL 6.35 6.93 6.37 6.30 6.36 6.36 
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Table 5: Average Run Length of data set 5 at ARL=371, n=10 and 𝝆𝒚𝒙 = 𝟎. 𝟔𝟎 

Shift 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 𝑴𝟓 𝑴𝟔 

0.00 355.91 347.43 354.57 333.28 354.96 354.96 

0.25 67.85 72.74 48.20 42.98 45.21 45.21 
0.50 12.09 12.66 7.27 6.30 6.79 6.79 

0.75 3.72 3.86 2.20 2.02 2.11 2.11 

1.00 1.71 1.81 1.21 1.16 1.22 1.22 

1.50 1.04 1.03 1.00 1.00 1.00 1.00 
2.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.50 1.00 1.00 1.00 1.00 1.00 1.00 

3.00 1.00 1.00 1.00 1.00 1.00 1.00 
LCL 3.64 3.90 3.62 3.92 3.87 3.87 

UCL 6.35 6.40 6.37 6.10 6.17 6.17 

 

Table 6: Average Run Length of data set 6 at ARL=371, n=10 and 𝝆𝒚𝒙 = 𝟎. 𝟗𝟎 

Shift 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 𝑴𝟓 𝑴𝟔 

0.00 355.91 345.94 369.41 357.48 342.10 342.10 
0.25 67.85 11.45 12.10 8.86 9.39 9.39 

0.50 12.09 1.57 1.56 1.36 1.49 1.49 

0.75 3.72 1.01 1.01 1.01 1.01 1.01 

1.00 1.71 1.00 1.00 1.00 1.00 1.00 
1.50 1.04 1.00 1.00 1.00 1.00 1.00 

2.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.50 1.00 1.00 1.00 1.00 1.00 1.00 
3.00 1.00 1.00 1.00 1.00 1.00 1.00 

LCL 4.04 4.58 4.55 4.57 4.57 4.57 

UCL 5.39 5.44 5.44 5.41 5.42 5.42 

 

Table 7: Average Run Length of data set 7 at ARL=371, n=15 and 𝝆𝒚𝒙 = 𝟎. 𝟑𝟎 

Shift 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 𝑴𝟓 𝑴𝟔 

0.00 383.72 364.44 376.50 379.99 357.40 357.40 

0.25 49.38 79.88 46.12 42.83 40.16 40.16 

0.50 7.02 15.57 6.06 5.92 5.92 5.92 
0.75 2.22 4.52 1.87 1.82 1.86 1.86 

1.00 1.25 2.08 1.16 1.16 1.16 1.16 

1.50 1.00 1.07 1.00 1.00 1.00 1.00 

2.00 1.00 1.00 1.00 1.00 1.00 1.00 
2.50 1.00 1.00 1.00 1.00 1.00 1.00 

3.00 1.00 1.00 1.00 1.00 1.00 1.00 

LCL 4.04 3.98 4.08 4.09 4.05 4.05 
UCL 5.93 6.26 5.90 5.89 5.90 5.90 
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Table 8: Average Run Length of data set 8 at ARL=371, n=15 and 𝝆𝒚𝒙 = 𝟎. 𝟔𝟎 

Shift 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 𝑴𝟓 𝑴𝟔 

0.00 383.72 365.87 363.08 362.14 371.83 371.83 

0.25 49.38 41.81 27.96 26.90 25.80 25.80 
0.50 7.02 6.13 3.55 3.40 3.53 3.53 

0.75 2.22 2.01 1.32 1.32 1.37 1.37 

1.00 1.25 1.16 1.04 1.02 1.04 1.04 

1.50 1.00 1.00 1.00 1.00 1.00 1.00 
2.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.50 1.00 1.00 1.00 1.00 1.00 1.00 

3.00 1.00 1.00 1.00 1.00 1.00 1.00 
LCL 4.04 4.20 4.20 4.24 4.21 4.21 

UCL 5.93 5.93 5.77 5.75 5.76 5.76 

 

Table 9: Average Run Length of data set 9 at ARL=371, n=15 and 𝝆𝒚𝒙 = 𝟎. 𝟗𝟎 

Shift 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 𝑴𝟓 𝑴𝟔 

0.00 383.72 367.51 354.02 368.59 353.34 353.34 
0.25 49.38 5.35 4.89 4.43 4.66 4.66 

0.50 7.02 1.12 1.09 1.06 1.09 1.09 

0.75 2.22 1.00 1.00 1.00 1.00 1.00 

1.00 1.25 1.00 1.00 1.00 1.00 1.00 
1.50 1.00 1.00 1.00 1.00 1.00 1.00 

2.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.50 1.00 1.00 1.00 1.00 1.00 1.00 
3.00 1.00 1.00 1.00 1.00 1.00 1.00 

LCL 4.04 4.58 4.55 4.57 4.57 4.57 

UCL 5.93 5.44 5.44 5.41 5.42 5.42 

 

Table 10: Shift-to-Shift Performance Table(EQL, RARL and PCI values for ARL=371) 

N 𝝆 Measures 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 𝑴𝟓 𝑴𝟔 

5 

0.3 

EQL 7.4427 11.8982 7.7119 7.1821 7.8338 7.8338 

RARL 1.0515 1.9361 1.0965 1.0000 1.1250 1.1250 

PCI 1.0363 1.6566 1.0738 1.0000 1.0907 1.0907 

0.6 

EQL 7.4427 7.7647 8.7969 6.4952 6.8227 6.8227 

RARL 1.2591 1.3515 1.5666 1.0000 1.0900 1.0900 

PCI 1.1459 1.1955 1.3544 1.0000 1.0504 1.0504 

0.9 

EQL 7.4427 5.6237 6.4036 5.5813 5.7060 5.7060 

RARL 2.7529 1.0437 1.6905 1.0000 1.1092 1.1092 

PCI 1.3335 1.0076 1.1473 1.0000 1.0224 1.0224 

10 
0.3 

EQL 6.0375 7.0607 5.9733 5.9278 6.0356 6.0356 

RARL 1.0488 1.5149 1.0173 1.0000 1.0455 1.0455 

PCI 1.0185 1.1911 1.0077 1.0000 1.0182 1.0182 

0.6 EQL 6.0375 6.0770 5.7739 5.7273 5.7525 5.7525 
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RARL 1.1978 1.2209 1.0288 1.0000 1.0178 1.0178 

PCI 1.0542 1.0611 1.0081 1.0000 1.0044 1.0044 

0.9 

EQL 6.0375 5.4798 5.4821 5.4664 5.4705 5.4705 

RARL 2.1484 1.0269 1.0331 1.0000 1.0084 1.0084 

PCI 1.1045 1.0025 1.0029 1.0000 1.0008 1.0008 

15 

0.3 

EQL 5.7791 6.2102 5.7306 5.7138 5.7048 5.7048 

RARL 1.0476 1.3368 1.0128 1.0048 1.0000 1.0000 

PCI 1.0130 1.0886 1.0045 1.0016 1.0000 1.0000 

0.6 

EQL 5.7791 5.7198 5.5898 5.5815 5.5829 5.5829 

RARL 1.1844 1.1307 1.0071 1.0000 1.0049 1.0049 

PCI 1.0354 1.0248 1.0015 1.0000 1.0002 1.0002 

0.9 

EQL 5.7791 5.4486 5.4463 5.4440 5.4454 5.4454 

RARL 2.0866 1.0164 1.0070 1.0000 1.0037 1.0037 

PCI 1.0615 1.0008 1.0004 1.0000 1.0003 1.0003 

 

 

Figure 1: ARL Comparisons of 𝐌𝟏 − 𝐌𝟔charts for 𝒏 = 𝟓 𝐚𝐧𝐝𝝆𝒚𝒙 = 𝟎. 𝟑𝟎. 

 

Figure.2: ARL Comparisons of 𝑴𝟏 − 𝑴𝟔 charts for 𝒏 = 𝟓 𝐚𝐧𝐝𝝆𝒚𝒙 = 𝟎. 𝟔𝟎 
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Figure 3: ARL Comparisons of 𝑴𝟏 − 𝑴𝟔charts for 𝒏 = 𝟓 𝐚𝐧𝐝𝝆𝒚𝒙 = 𝟎. 𝟗𝟎 

 

Figure 4: ARL Comparisons of 𝐌𝟏 − 𝐌𝟔charts for 𝒏 = 𝟏𝟎 𝐚𝐧𝐝𝝆𝒚𝒙 = 𝟎. 𝟑𝟎. 

 

Figure 5: ARL Comparisons of 𝑴𝟏 −  𝑴𝟔 charts for 𝒏 = 𝟏𝟎 𝐚𝐧𝐝𝝆𝒚𝒙𝟎. 𝟔𝟎. 
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Figure 6: ARL Comparisons of 𝑴𝟏 − 𝑴𝟔charts for 𝒏 = 𝟏𝟎 𝐚𝐧𝐝𝝆𝒚𝒙 = 𝟎. 𝟗𝟎. 

 

Figure 7: ARL Comparisons of 𝑴𝟏 −  𝑴𝟔 charts for 𝒏 = 𝟏𝟓 𝐚𝐧𝐝𝝆𝒚𝒙𝟎. 𝟑𝟎. 
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Figure 8: ARL Comparisons of 𝑴𝟏 − 𝑴𝟔 charts for𝒏 = 𝟏𝟓𝐚𝐧𝐝𝝆𝒚𝒙𝟎. 𝟔𝟎. 

 

Figure 9:  ARL Comparisons of 𝑴𝟏 − 𝑴𝟔 charts for 𝒏 = 𝟏𝟓 𝐚𝐧𝐝𝝆𝒚𝒙 = 𝟎. 𝟗𝟎. 
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value of PCI=1.0003 which shows its decreasing trend. Similarly, PCI and RARL measures have the same 

descending case by increasing sample sizes at different levels as well as with the increase of correlation 
coefficient. The shift-to-shift performance shows that by increasing shifts level as well as by increasing 

correlation coefficient, we obtained best ARL, PCI and RARL results. Hence, showing that 6M is the most 

efficient estimator among all estimators. 3.1 Figure (1-9) based on bivariate normal distribution 

when 𝐴𝑅𝐿 = 371, n = 5, 10 and 15 and  𝜌𝑦𝑥 = 0.30, 0.60 and 0.90, we have designed average run 

length of 1M , 2M , 3M , 4M , 5M  and 6M estimators against different values of shifts, we detected that our 

robust estimators are more proficient than other traditional estimators. 

Illustrative example 

In order to illustrate the application of the control structures under study and highlight their importance in 

an efficient detection of changes in process parameters, we provide here descriptive examples to compare 

the performance of the structures of 𝑀1 vs𝑀6. We conclude the process has shifted and is unstable if we 

observe a point outside the control limits. Among all estimators 𝑀6 is the most efficient estimator so we 

are comparing it with the usual mean estimator𝑀1. For the said purpose, we have generated data sets 

containing 50 subgroups using sample sizes n=5, 10, 15 from the bivariate normal distribution. The first 

30 observations are generated from the in-control situation, i.e.,𝛿 = 0, whereas the remaining 20 

observations are generated from an out-of-control situation with 𝛿 = 1 for both data sets. By using these 

values (𝜇𝑦 = 𝜇𝑥 = 2;𝜎𝑦 = 𝜎𝑥 = 1; Shift 𝛿 = 0.60, 𝑛 = 15 and𝜌𝑦𝑥 = 0.90) we conclude that 1M

detected shift in 3 sub-groups while 6M detected shift in 12 sub-groups. As 6M chart detected more out-

of-control signals than 1M chart, so it is justified that 6M chart has better detection ability than 1M  

Table 11: Control Charting Values of 𝑴𝟏 to 𝑴𝟔Charts 

Seri Serial 

No 
𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 𝑴𝟓 𝑴𝟔 

1 1.5891 2.1807 2.1342 2.1649 2.1177 2.1177 

2 1.9521 1.8687 1.9286 1.9002 1.8855 1.8855 

3 2.2192 1.7960 1.7666 1.8175 1.7661 1.7661 

4 2.0530 2.0481 2.0416 2.0428 2.0119 2.0119 
5 2.3617 1.9821 1.9585 1.9531 1.9515 1.9515 

6 1.8722 1.9151 1.9143 1.9459 1.9471 1.9471 

7 2.0069 1.9627 1.8925 1.9220 1.9467 1.9467 
8 2.1779 2.0026 2.0069 2.0106 1.9863 1.9863 

9 1.8903 2.0031 1.9999 2.0240 2.0217 2.0217 

10 1.7785 1.9900 1.9981 1.9761 1.9542 1.9542 
11 2.3157 2.1675 2.1546 2.1620 2.1239 2.1239 

12 1.7473 1.8558 1.8584 1.8647 1.8294 1.8294 

13 1.7506 1.8900 1.8984 1.9074 1.8768 1.8768 

14 1.8277 1.9752 1.9766 1.9758 1.9478 1.9478 
15 1.6123 1.9120 1.9351 1.9405 1.9341 1.9341 

16 1.8106 2.0390 2.0392 2.0328 2.0025 2.0025 

17 1.9313 2.0853 2.0877 2.0871 2.0593 2.0593 
18 1.9898 2.1647 2.1247 2.1367 2.0916 2.0916 

19 1.4155 1.9192 1.9176 1.9477 1.9437 1.9437 

20 1.6388 2.0821 2.0875 2.0885 2.0667 2.0667 
21 1.8878 2.0184 2.0319 2.0257 2.0019 2.0019 
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22 1.6935 2.0498 2.0604 2.0684 2.0685 2.0685 

23 2.1434 1.8343 1.8404 1.8381 1.8066 1.8066 
24 1.8934 1.9663 1.9632 1.9722 1.9447 1.9447 

25 1.9817 2.0529 1.9839 1.9748 2.0340 2.0340 

26 2.0370 2.1893 2.1589 2.1807 2.1378 2.1378 

27 1.8679 2.1848 2.1935 2.1879 2.1629 2.7729 
28 1.6384 2.0750 2.1041 2.1032 2.1443 2.7443 

29 1.6885 1.9779 1.9596 2.0162 2.0776 2.6776 

30 2.1070 2.2637 2.2105 2.2352 2.1695 2.1695 
31 2.4374 2.3689 2.4329 2.4098 2.6308 2.6308 

32 2.7462 2.4534 2.6053 2.5035 2.8646 2.8646 

33 2.1380 2.6176 2.6854 2.6393 2.7334 2.7334 

34 2.8821 2.4752 2.3972 2.4393 2.3243 2.3243 
35 2.8427 2.6973 2.5797 2.6489 2.4677 2.4677 

36 2.6500 2.7121 2.7275 2.7178 2.7104 2.7104 

37 2.8068 2.5522 2.5017 2.5252 2.4089 2.8089 
38 2.0065 2.4960 2.5195 2.5024 2.4945 2.4945 

39 2.1960 2.6595 2.6718 2.6627 2.6415 2.6415 

40 2.7164 2.6463 2.4858 2.5832 2.4011 2.4011 
41 2.2042 2.6271 2.6859 2.6409 2.6800 2.6800 

42 2.4343 2.3956 2.5101 2.4309 2.6027 2.6027 

43 3.0908 2.5529 2.6278 2.5741 2.6573 2.6573 

44 2.6755 2.5186 2.6354 2.5590 2.8130 2.8130 
45 2.8221 2.6608 2.6391 2.6552 2.5919 2.5919 

46 2.7643 2.6717 2.6607 2.6612 2.5778 2.5778 

47 2.4551 2.4632 2.4757 2.4689 2.4568 2.4568 
48 2.5542 2.3895 2.4021 2.4064 2.4446 2.6446 

49 2.6957 2.4396 2.5522 2.5099 3.2574 3.2574 

50 2.2904 2.6189 2.5170 2.5878 2.4524 2.4524 

In Table 11, we are given 50 generated values of some estimators i.e. 1M , 2M , 3M , 4M , 5M and 6M . 

The average run length of traditional estimators are compared with the robust estimators. The robust 

estimators detect much more outliers in the data sets. By way of 6M chart detected more out-of-control 

signals than 1M chart, so it is justified that 6M chart has better detection ability than
1M

. Therefore, 

traditional estimators perform less effectively than the robust estimators.  
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Figure 10: Control Charting Display of 𝑴𝟏 vs. 𝑴𝟔  charts 

 

Figure 11: Control Charting Display of 𝑴𝟐 vs. 𝑴𝟔  charts 
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(b)      Control chart for  M2 and M6 
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Figure 12: Control Charting Display of 𝑴𝟑 vs. 𝑴𝟔  charts 

 

Figure13:  Control Charting Display of 𝑴𝟒 vs. 𝑴𝟔  charts 
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detected 9 more out-of-control signals than 3M chart, so it is justified that 6M chart has better detection 

ability than 3M . In Figure 13, we can say that by using these values (𝜇𝑦 = 𝜇𝑥 = 2;𝜎𝑦 = 𝜎𝑥 = 1; Shift 

𝛿 = 0.60, 𝑛 = 15 and𝜌𝑦𝑥 = 0.90) we conclude that 4M detected shift in 10 sub-groups while 6M

detected shift in 17 sub-groups. As 6M chart detected 7 more out-of-control signals than 4M chart, so it is 

justified that 6M chart has better detection ability than 4M . In Figure 14, we can say that by using these 

values (𝜇𝑦 = 𝜇𝑥 = 2;𝜎𝑦 = 𝜎𝑥 = 1; Shift 𝛿 = 0.60, 𝑛 = 15 and𝜌𝑦𝑥 = 0.90) we conclude that 5M

detected shift in 12 sub-groups while 6M detected shift in 17 sub-groups. As 6M chart detected 5 more 

out-of-control signals than 5M chart, so it is justified that 6M chart has better detection ability than 5M . 

 

GENERAL DISCUSSION 

We summarize the above results in the following steps: 

 The measure of performance used is the average run length (ARL). 

 The results show that the ability of the Shewhart charts to detect shifts in the process mean is 

quite. 

 Robust to data correlation, while the corresponding individuals Shewhart charts rarely detects 
these shifts more quickly than the other charts. 

 When sample size and correlation both are increased, we get efficient/better results. 

SUMMARY, CONCLUSION AND RECOMMENDATION 

Every industrial production process is subject to two distinct types of variation: common-cause variation 
and special-cause variation. Common-cause variation represents the inherent, random fluctuations that are 

part of the regular operation of a process. In contrast, special-cause variation arises from identifiable, non-

random factors—such as equipment malfunction, operator error, or material defects—that disrupt process 
stability and lead to deviations beyond expected limits. 

To effectively monitor and control such processes, Shewhart control charts remain one of the most widely 

used tools in Statistical Process Control (SPC). These charts are particularly effective in detecting 
significant shifts in the process mean or dispersion, making them ideal for identifying special causes that 

require immediate corrective action (Montgomery, 2020). The design of the Shewhart chart, with its 

center line (CL), upper control limit (UCL), and lower control limit (LCL), enables practitioners to 
distinguish between natural process variation and abnormal deviations. 

However, the performance of traditional Shewhart charts—based on classical estimators such as the 
sample mean and standard deviation is often compromised in the presence of outliers, non-normality, or 

measurement error, which are common in real-world industrial data. Under such conditions, conventional 

estimators become biased and inefficient, leading to inflated control limits, increased false alarm rates 
(Type I error), and delayed detection of true process shifts (Type II error). 

To address these limitations, this study proposes a robust framework for Shewhart-type control charts by 

incorporating robust estimators of location and scale derived from auxiliary information. Specifically, the 
proposed estimators M₅ and M₆ utilize non-conventional measures of central tendency, such as the tri-

mean, mid-range, and Hodges-Lehmann estimator, which are known for their resistance to extreme 
observations and high efficiency under contamination (Riaz et al., 2023; Khan et al., 2022). 
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A comprehensive Monte Carlo simulation study was conducted to evaluate the performance of the 

proposed estimators against traditional counterparts. The results consistently demonstrate that robust 
estimators outperform classical estimators in terms of key performance metrics, including: 

 Average Run Length (ARL) 

 Extra Quadratic Loss (EQL) 

 Relative ARL (RARL) 

 Performance Comparison Index (PCI) 

The simulation outcomes reveal that the proposed robust estimators yield smaller values of ARL under 

out-of-control conditions, indicating faster detection of process shifts, while maintaining a stable in-

control ARL, which minimizes false alarms. This confirms that a smaller value of performance 
measures—particularly ARL and EQL—is desirable for an efficient and reliable charting structure in 
process monitoring. 

Furthermore, the robustness of the proposed estimators to outliers and measurement error in auxiliary 

variables enhances their applicability in practical settings where data quality is often imperfect. By 

leveraging auxiliary information—such as correlated process parameters—the proposed estimators 
achieve greater precision and stability, aligning with recent advances in auxiliary-based estimation under 
measurement error (Singh & Karan, 2021; Fuller, 2009). 

FUTURE RESEARCH DIRECTIONS 

While the current study focuses on detecting significant shifts using robust Shewhart charts, future 

research should explore the development of hybrid control charting schemes that simultaneously detect 
both large and small shifts. One promising direction is the integration of Shewhart and Non-Shewhart 

(e.g., CUSUM or EWMA) charts into a combined monitoring framework. Such a system would leverage 

the sensitivity of CUSUM/EWMA to small, gradual shifts and the immediate responsiveness of Shewhart 
to large deviations, thereby providing a more comprehensive and adaptive quality control solution. 

Moreover, the use of auxiliary information should be extended beyond location parameters to the 

monitoring of dispersion (variance or standard deviation). Given that process variability is a critical 
determinant of quality, robust estimation of dispersion parameters—using auxiliary variables and robust 

scale measures like quartile deviation (QD) or inter quartile range (IQR)—can significantly enhance the 
effectiveness of control charts in detecting changes in process consistency. 

Each industrial production process has two categories of process specificity, and the other is an irregular 

change due to a specific cause or production process. We use procedure of Shewhart control chart to 
monitor large shifts in the process. The simulation study of the estimators suggests that traditional 

estimators are less efficient than robust estimators i.e.,𝑀5  and 𝑀6 . We conclude that to have a smaller 

value of performance measures for an efficient charting structure for process monitoring is desirable. The 

robust measures used in this research are strong against outliers present in the data. We recommended that 
this work might be prolonged to check large and small shifts in the system at the same time, by using 

combined form of Shewhart-Non Shewhart control charts. Moreover, the auxiliary information should be 
extended for monitoring of dispersion parameters. 
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