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ABSTRACT

Neuro-Symbolic Artificial Intelligence (AI) is indeed a fascinating domain, merging the structured
reasoning of symbolic methods with the learning capabilities of neural networks. Its long-standing
history reflects its significance in advancing AI towards achieving more robust and interpretable
solutions. Neuro-symbolic AI is such an exciting and transformative field, as it combines the structured
reasoning of symbolic AI with the adaptability and learning capabilities of neural networks. Your
summary elegantly captures the breadth and depth of this growing discipline. The focus on
representation, learning, reasoning, and decision-making is particularly critical, as these features define
the capabilities of neuro-symbolic systems; Combines structured knowledge with data-driven insights.
Merges symbolic frameworks with neural networks for adaptive systems. Implements robust symbolic
logic for explainable outcomes. Guides systems in making informed and ethical choices. Neural-
symbolic computation stands out as a compelling framework for bridging symbolic reasoning with the
adaptive strengths of neural networks. Its foundation in cognitive models of reasoning, learning, and
language offers a computational lens to explore and replicate human-like intelligence. Establishing a
robust basis by combining logic-based symbolic systems and neural-based connectionist models to
capture both structured reasoning and pattern recognition. Highlighting practical systems like cognitive
computational tools that integrate machine learning and reasoning. These systems' impact ranges from
biomedical applications (e.g., computational biology) to problem-solving in fault diagnosis and
software verification. The need to address interpretability, scalability, and adaptability while ensuring
the systems align with human cognitive processes.

Keywords: Artificial intelligence, AI, Neuro-Symbolic, Psycho linguistics, Cognitive linguistics, Deep
learning, Cognitive Psychology.

INTRODUCTION

The study of human behaviour in the context of fields like computer science, artificial intelligence (AI),
neural computation, cognitive science, philosophy, and psychology offers a rich interplay between
cognitive modelling and computational techniques (Bhuyan et al., 2024; Belle, 2024). By presupposing
that behaviour is largely governed by cognition and mental processing, these various disciplines share a
common interest in understanding the mechanisms behind human behaviour and how they can be
represented, simulated, or even replicated in machines (Hitzler & Sarker, 2022; Kumar, 2023).

Computational-logic systems focus on high-level reasoning and formalized thought processes (Votsis,
2024; Belle, 2024). They attempt to model cognitive reasoning using logical frameworks. Some key
areas here are classical logic, which deals with well-defined reasoning rules and the relations between
statements. Classical logic can model reasoning that follows strict, binary truth values (true/false), like
syllogisms or propositional logic (Hitzler et al., 2024). Nonmonotonic logic extends classical logic by
allowing for the possibility that the set of conclusions can be retracted in the light of new information.
Human reasoning often involves revising conclusions as new information emerges (e.g., revising beliefs
based on new evidence), which makes nonmonotonic logic an important tool for modelling this kind of
dynamic reasoning (Bhuyan, 2025). Modal logic concerns reasoning about necessity and possibility.
It enables us to make inferences regarding various states or conditions, such as "it is possible
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that…", or "it must be the case that…. This is particularly helpful for simulating mental
states, including beliefs, knowledge, and intentions (Belle, 2024). Temporal
logic is concerned with reasoning about time and temporal relationships. It permits the representation of
things like "event A happens before event B" or "event A is always true at some time in the future,"
which are essential for modelling cognitive processes that depend on time or sequence (Oltramari, 2023).
These logic models are of immense use in high-level cognition modelling, for instance, decision-making,
reasoning, planning, and understanding human deduction based on the information they
are given (Agrawal & Pandey, 2024).

Connectionist models, which are commonly known as neural networks, deal with lower-level cognitive
dynamics (Thomas & Saad, 2022; Li et al., 2024). These models are motivated by brain architecture
try to mimic how thinking arises from the interaction of brain cells (or artificial "nodes"
in computational models) (Hossain & Chen, 2025). The most significant types are feedforward
networks, or basic neural networks where information flows one way only, from input to
output, without loops. They are used primarily for tasks like classification, pattern detection, and
regression (Kishor,2022). Feedback loops are incorporated into recurrent networks, allowing the
modelling of temporal dynamics, memory, and context-sensitive data. Recurrent networks,
including Recurrent Neural Networks (RNNs), are necessary for sequence tasks, such as speech
recognition or language modelling (Wan et al., 2024). Deep networks, or deep neural networks
(DNNs), are composed of several layers of nodes (neurons) to form complex and
hierarchical data representations. DNNs are utilized in applications such as image recognition, speech
processing, and natural language processing (Keber et al., 2024).

Self-organizing networks, such as Self-Organizing Maps (SOMs), emphasize unsupervised learning
and data organization without the use of external labels. These are especially valuable for clustering and
pattern discovery (Alabi & Moarales, 2024). These connectionist models are essential for understanding
the emergent processes of cognition, such as perception, learning, memory, and decision- making. The
idea is that higher-level cognition emerges from the interactions of many simple processing units
(neurons), much like the brain does (Bhuyan, 2025; Kumar, 2023).

Human cognition often involves uncertainty, ambiguity, and probabilistic reasoning, especially in real-
world decision-making (Colelough & Regli, 2025). To model this, AI systems rely on probabilistic
methods. Some key models of uncertainty include Bayesian networks, which use Bayesian inference to
model uncertain relationships between variables. They are useful for representing systems where
information is incomplete or noisy, such as predicting the likelihood of certain events given prior
knowledge (Hitzler et al., 2024). Markov Decision Processes (MDPs) are used in decision-making
problems, especially in reinforcement learning. MDPs help model situations where an agent
is deciding over time in a stochastic or uncertain environment. Each action by the agent has a bearing on
future rewards and states (Wan et al., 2024).

Markov Logic Networks (MLNs) blend first-order logic expressiveness with probabilistic reasoning.
MLNs can represent complex relational domains where uncertainty is a core aspect, such as social
networks or bioinformatics (Bhuyan et al., 2024). Probabilistic Inductive Logic Programs
(PILPs) extend logic programming to include uncertainty and learning from data.
PILPs integrate inductive logic programming (ILP), which aims at learning relations and rules from
examples, with probabilistic reasoning (Belle, 2024). Such models
of uncertainty are essential for modeling real-world cognition, wherein people often have to cope with
incomplete, uncertain, or probabilistic information. By adopting these approaches, we can model
human-like reasoning in AI systems that must make decisions under uncertainty (Hamilton et al., 2024).
The unifying theme of all these models is that they try to capture varying degrees of cognition and
mental processing within computational systems (Hitzler et al., 2022; Bhuyan et al., 2024).
Computational-logic models are more interested in formalizing high-level reasoning, abstract thinking,
and problem-solving (Belle, 2024). Connectionist models address lower-level functions such as pattern
recognition, learning, and memory, drawing inspiration from the biological brain (Thomas & Saad,
2022).
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Uncertainty models address the probabilistic and vague nature of real-
world phenomena, allowing models to operate under uncertain conditions (Colelough & Regli,
2025). Collectively, these methods lead to a more integrated explanation of
human behavior and computational modeling (Hamilton et al., 2024). As
AI is developed further, the merger of knowledge from logic, neural computation, and uncertainty
models will enable more advanced systems to reason, learn,
and decide as more accurately resembling human thought (Hitzler & Sarker, 2022; Agrawal
& Pandey, 2024).

LITERATURE REVIEW

The observation highlights a crucial intersection between artificial intelligence (AI) and psychology,
particularly in how insights from brain cognition, behaviourist theory, and the philosophy of mind
inform and shape the development of AI systems (Bhuyan, 2025; Hossain & Chen, 2025).

Brain Cognition and AI Development

AI development has often drawn inspiration from the human brain, particularly in areas like neural
networks, which are loosely modelled after the structure and function of biological neurons. However,
this replication is limited to physiological processes and struggles to capture the subjective,
psychological aspects of human cognition (Thomas & Saad, 2022; Li et al., 2024). Human memory is
inherently dynamic and influenced by emotional and contextual factors. Forgetting in humans is often
passive and can even be counterintuitive—for example, the "ironic process theory," where trying to
suppress a memory makes it more salient. In contrast, machine memory is typically designed for
efficiency, with active deletion or overwriting of data. This fundamental difference highlights the gap
between biological and artificial systems in simulating human-like memory processes (Hamilton et al.,
2024).

Psychology as a Foundational Theory for AI

Reinforcement learning (RL) in AI is directly inspired by behaviourist psychology, particularly the work
of B.F. Skinner and others. RL algorithms learn by interacting with an environment and receiving
rewards or punishments, much like how organisms develop habitual behaviours through conditioning.
This connection underscores how psychological theories can provide a framework for designing AI
systems that learn and adapt (Bhuyan, 2025; Wan et al., 2024). One of the major challenges in AI is
replicating human-like emotional responses and decision-making in ambiguous or uncertain situations.
These capabilities are deeply rooted in psychological processes, such as affective computing (emotion
modelling) and theories of decision-making under uncertainty. Advances in these areas will likely
require deeper integration of psychological insights (Colelough & Regli, 2025; Hossain & Chen, 2025).

Philosophy of Mind and AI

The philosophy of mind grapples with questions about consciousness, qualia (subjective experiences),
and intentionality—areas where AI currently falls short. While AI can simulate certain cognitive
processes, it lacks the subjective experience that characterizes human thought. This limitation raises
philosophical questions about whether machines can ever truly "think" or "feel" in the way humans do
(Votsis, 2024; Hitzler & Sarker, 2022). The philosophy of mind also informs ethical discussions about
AI, such as the moral status of AI systems, the nature of autonomy, and the implications of creating
machines that mimic human behaviour. These considerations are critical as AI becomes more advanced
and integrated into society (Kumar, 2023; Belle, 2024).

Challenges and Future Directions

Developing AI systems that can understand and respond to human emotions (affective computing)
remains a significant challenge. This requires not only technical advancements but also a deeper
understanding of emotional processes in psychology (Li et al., 2024; Bhuyan et al., 2024). Human
decision-making often involves navigating ambiguous or incomplete information, relying on intuition,
context, and prior experience. AI systems are poor at handling these subtleties, and advances in
cognitive psychology might serve to open up avenues for enhancement (Agrawal & Pandey, 2024;
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Colelough & Regli, 2025). The future of
AI research will most probably rely on more integration between computer scientists, psychologists,
neuroscientists, and philosophers. By combining knowledge from these disciplines, researchers
can develop AI systems that are not only more powerful but also more human cognition and values
(Hitzler et al., 2024; Thomas & Saad, 2022).

Human vs. Machine Processing: Internalized Knowledge and Emotion

Humans process external inputs in relation to internalized knowledge structures, which are informed by
prior experiences, beliefs, and emotions (Oltramari, 2023). This allows us to perceive and respond tothe
world subtly, e.g., in the sense of having attitudes, preferences, and affective reactions likesatisfaction,
dissatisfaction, love, and dislike (Hitzler et al., 2022). Emotions
are a critical componentof human cognition, contributing to decision-making, memory, and learning
(Votsis, 2024).

For example,positive emotions like satisfaction reinforce certain behaviors, while negative
ones like dissatisfaction cancause avoidance or alteration (Alabi & Morales, 2024). Machines, on the
other hand, do not have inherent emotional experiences and arepre-programmed in terms of algorithms
and data to interpret inputs (Thomas & Saad, 2022). While AI can simulate emotional
responses based on sentiment analysis or affective computing, such responses are
not grounded in subjective experience or internalized knowledge(Bhuyan et al.,2024).

Emotion as a Catalyst for Learning and Adaptation

Human cognitive psychology emphasizes the role of emotions in modifying internal knowledge
structures (Kumar, 2023). For instance, if we are not satisfied, we would change our beliefs
or behavior to achieve a better outcome (Hamilton et al., 2024). To replicate this process in AI,
researchers can utilize emotion-tagged data to guide machine learning (Wan et al., 2024).

Reinforcement learning to associate certain outcomes with rewards or penalties, mimicking how human
beings learn through affective feedback (Belle, 2024). Affective computing allows AI
to measure and simulate emotional states to enable systems to adjust their behaviour
to comply with human attitudes and preferences (Agrawal & Pandey, 2024). It is possible to program AI
systems to update their internal models of emotional feedback, thereby "re-learning"
and evolving in response over time (Colelough & Regli, 2025).

Challenges in Simulating Human Emotional Cognition

Human emotions are extremely subjective and context-specific (Hitzler & Sarker, 2022). The
same incident can give rise to various emotional reactions in different people or even in the
same person under different conditions (Keber et al., 2024). This nuance is a large challenge to capture
in AI (Li et al., 2024). Though AI can learn on emotion-tagged data,
these tags tend to be overly simplistic and miss the depth of human emotional experiences (Hossain &
Chen, 2025). Further, emulating emotions in AI challenges ethical concerns regarding manipulation,
deception, or misuse For e.g., should AI systems be made to simulate human
emotions when they do not possess real understanding or empathy? (Bhuyan, 2025).

Applications and Future Directions

By integrating emotional responses and personal preferences, AI systems can
be customized for specific users (Kishor, 2022).Recommendation systems already use preference data to
personalize content, but integrating emotional feedback could make these systems even more responsive
(Votsis, 2024). Emotionally intelligent AI could improve human-computer interaction, making AI
systems more intuitive and user-friendly (Thomas & Saad, 2022). AI systems that understand and
respond to human emotions could also play a role in mental health care, such as providing emotional
support or detecting signs of distress (Kumar, 2023).

Interdisciplinary Collaboration

Advances in AI will require closer collaboration between cognitive psychologists and AI researchers
(Oltramari, 2023). Cognitive psychology can provide insights into how humans process information,
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form attitudes, and experience emotions, while AI can offer tools for modelling and simulating these
processes (Hitzler et al., 2022). The philosophy of mind can help address deeper questions about the
nature of consciousness, emotion, and subjective experience, guiding the ethical and theoretical
development of emotionally intelligent AI (Belle, 2024). This interdisciplinary approach is crucial for
advancing neuro-symbolic systems that bridge symbolic reasoning with neural networks (Votsis, 2024).

Current Limitations of AI in Simulating Human Cognition

Human memory is associative, context-dependent, and influenced by emotions (Kumar, 2023). While
AI systems can store and retrieve vast amounts of data, they lack the ability to form meaningful,
context- rich associations or forget information in a human-like way (Bhuyan et al., 2024). Human
attention is selective and dynamic, allowing us to focus on relevant information while filtering out
distractions (Wan et al., 2024). AI systems, particularly those based on deep learning, struggle with
tasks requiring selective attention or context switching (Thomas & Saad, 2022). Human perception is
multimodal and integrates sensory inputs seamlessly (Hamilton et al., 2024). While AI systems are
advanced in specific domains like computer vision, they often lack the ability to integrate multiple
modalities holistically (Li et al., 2024). In addition,
human intentions and emotions are greatly connected to
subjective experience and the social environment (Alabi & Morales,
2024). While AI can mimic emotions using affective computing, they do not have a real understanding
or empathy (Agrawal & Pandey, 2024).

The Role of Cognitive Psychology in Advancing AI

Cognitive psychology gives us a theory about how people process information, make decisions,
and have feelings (Hitzler & Sarker, 2022). With the inclusion of such knowledge, AI researchers
can create systems that better approximate human cognition (Colelough & Regli, 2025). Cognitive
psychology highlights the central role of organized knowledge representation—e.g., schema and mental
models—in human thinking (Oltramari, 2023). Similar methods, like semantic networks or
graph representations of knowledge (Bhuyan, 2025).

Motivation, interest, and feedback based on emotions affect human learning (Kishor, 2022). AI
systems can also be made to include the same mechanisms, for example, reinforcement
learning with intrinsic motivation or exploration based on curiosity (Wan et al., 2024).

Key Research Directions for AI and Cognitive Psychology

Creating AI systems that are able to identify and understand human emotions is essential (Hossain &
Chen, 2025). This entails affective computing that employs sensors and machine learning
to identify emotional cues, and contextual awareness to better interpret emotions (Keber et al.,
2024). Creating empathy in AI means knowing intentions and social relationships,
which may be achieved by combining theory of mind—deducing other people's mental states (Belle,
2024)—and natural language processing to produce emotionally rich answers (Votsis, 2024). Human-
like memory simulation
involves creating contextual connections by means of associative memory (Bhuyan et al., 2024)
and supporting lifelong learning for ongoing adaptation without catastrophic forgetting (Thomas & Saad,
2022).

Applications of Cognitive Psychology-Inspired AI (Expanded)

Recent progress in psychology-influenced neural networks has made more natural interactions
between AI systems and humans (Shen et al., 2024). The systems now more closely mimic human
attention patterns in visual processing tasks (Zehra et al., 2025). Experimental psychology approaches
have also guided the creation of more interpretable AI systems for mental health applications (Taylor &
Taylor, 2021), especially in simulating memory behaviors pertinent to therapy interventions (Shen et al.,
2024). In addition, AI systems incorporating psychological models of comprehension now show
improved performance in narrative text understanding (Diakidoy et al., 2014), enabling more
sophisticated conversational agents.
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Challenges and Ethical Considerations (Enhanced)

The intersection between psychology and AI has highlighted critical gaps in system explainability
(Hoffman et al., 2022), especially in vision systems that attempt to mimic human perception (Zehra et
al., 2025). Limitations in social robotics often stem from incomplete implementations of developmental
psychology models (Sallami, 2021), particularly when tackling hierarchical reasoning tasks. Although
AI has made significant inroads into creative domains, fundamental differences remain between human
and machine creativity (Das, 2022), particularly regarding inspiration and conceptual development.

Future Prospects

Looking ahead, future systems may integrate biologically inspired cognitive architectures (Goertzel et
al., 2010) with neuro-symbolic approaches to support more human-like reasoning. Psychology-inspired
models for hierarchical attribute prediction (Li et al., 2022) indicate that future AI could develop
capabilities for human-like aesthetic evaluation. Furthermore, combining natural language processing
with psychology-inspired heuristics (Nunes et al., 2015) could enhance the transparency and
accountability of AI decision systems.

Example of Cognitive Psychological Artificial Intelligence Applications

Cognitive psychology has indeed been instrumental in the development of AI, especially in modeling
aspects of human cognition including attention mechanisms, memory processes, and problem-solving
skills (Zhao et al., 2022). By emulating human cognitive processes, AI systems are becoming more
sophisticated in natural language processing (Taylor & Taylor, 2021), image recognition (Li et al., 2022),
and decision-making (Nunes et al., 2015). If
you're examining the interaction between brain science and psychology in
AI research, a number of important areas are worth investigation. One is neuro-inspired
AI, whereby neural networks are inspired by the structure and function of the brain (Goertzel et al.,
2010), with recent breakthroughs in spiking neural networks displaying particularly
strong biological analogues (Shen et al., 2024). Attention mechanisms in AI, especially attention layers
in deep learning, are motivated by human selective attention and focus (Zehra et al., 2025) and
have changed computer vision and natural language
processing. Memory in AI systems is another critical subject, where computational
models simulate episodic and semantic memory present in humans (Saeed et al.,
2023), especially for lifelong learning architectures (Colelough & Regli, 2025).

Emotion recognition is another prominent application, where AI systems analyze and respond to human
emotions using psychological insights (Pravettoni et al., 2015), with wide-ranging uses from mental
health screening to customer service (Luxton, 2014). Additionally, learning processes in AI often mirror
reinforcement learning principles seen in human behavioral learning (Daróczy, 2010), especially in
developmental robotics (Sallami, 2021).

Three specific application scenarios further illustrate these principles. In face attraction, AI systems
utilize cognitive principles to analyze and assess facial features, expressions, and aesthetic preferences
(Zhao et al., 2022). This is especially useful in social robotics (Bhuyan et al., 2024) and virtual avatars
(Kumar, 2023), though challenges around cultural bias remain (Irshad et al., 2022). In affective
computing, AI systems learn to identify, understand, and even mimic human emotions using gestures,
voice tones, and facial expressions (Taylor & Taylor, 2021). This yields empathetic and
responsive customer service systems (Agrawal & Pandey, 2024) and therapeutic systems (Hossain &
Chen, 2025). Lastly, in music emotion applications, AI is trained to produce and process
music in relation to emotional context (Das, 2022), which is being utilized for mood regulation,
personalized music playlists, and therapeutic interventions, all grounded on psychological models of
music cognition (Li et al., 2022).

Neural-Symbolic for Education: A Framework

The most important building blocks of neural-symbolic systems (NSC), as described by Garcez et al.
(2009) and Bader and Hitzler (Besold et al., 2021), emphasize four core features. The first
is the representation of knowledge, where symbolic knowledge is mapped to a neural network (Yu et al.,
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2023). The second feature, learning, is concerned with acquiring knowledge by the neural network from
examples (Hooshyar et al., 2024). The third building block,
reasoning, is about applying the acquired knowledge for problem-solving (Venugopal et al.,
2021). Lastly, knowledge extraction is the retrieval of symbolic knowledge from the network (Garcez et
al., 2009).

Key Components of the Neural-Symbolic Framework

During the translation algorithm stage, symbolic knowledge
is added to the loss function of the neural network or initial architecture (Hooshyar et al.,
2023). Bottom-clause propositionalising is one of the techniques employed to transform symbolic
knowledge into propositional clauses (Besold et al., 2021). The neural learning
algorithm entails updating the neural network with data while revising the
theory from previous background knowledge (Hooshyar et al., 2025). Inductive logic programming (ILP)
is especially effective here, utilizing NSC's learning ability to construct logic
programs automatically (Yu et al., 2023).

Model-based methods or theorem proving are usually used for reasoning in neural networks (Zhang &
Sheng, 2024). The knowledge acquired through learning optimizes the
network and enhances the representation of problems (Venugopal et al., 2021). Once training is finished,
the revised symbolic knowledge extraction takes place, with the
algorithm being created to provide a true representation of the behavior of the network (Garcez et al.,
2009; Hooshyar et al., 2024). An expert then gives feedback and analysis, examining the extracted
knowledge and determining if it should be reintroduced into the system (Hooshyar et al., 2023)

Applications in Education

In forecasting students' risk of failure, online learning behavior data are used to forecast possible risks
(Hooshyar et al., 2021). Concerns in
this area include understanding the predictions and minimizing poor decisions (Hooshyar et al.,
2025). Models become capable of making more accurate predictions
and providing more understandable explanations with symbolic knowledge incorporated (Hooshyar et
al., 2024). When choosing suitable physics students, models have a
tendency to overestimate grades to the detriment of relationships in the subjects (Hooshyar et al.,
2023). Incorporating symbolic knowledge enhances reasoning and decision-making (Venugopal et al.,
2021).

Benefits of Neural-Symbolic Computing in Education

Neural-symbolic computing has several advantages. It makes it more accurate with the combination
of data-driven learning and rules from the domain (Hooshyar et al., 2024). It makes it more explainable
by the provision of clear reasoning (Hooshyar et al., 2021). It also improves efficiency through
less dependence on massive training datasets (Yu et al., 2023).

Challenges and Considerations

Despite its benefits, neural-symbolic computing is not without challenges. One challenge is that it makes
wrong predictions when symbolic knowledge is lacking (Hooshyar et al.,
2025). Another challenge is data limitations and this may result in models that dismiss key educational
guidelines (Hooshyar et al.,2023). Further, the process has a tendency to require the involvement of
domain experts to interpret and validate the extracted knowledge (Garcez et al., 2009).

Visual Question Answering Application

In traditional approaches to visual question answering, limitations are that
they necessitate large quantities of supervision and training data (Besold et al., 2021) and end-to-end
reasoning based on none of them being separable one by one (Yu et al., 2023). The
NSC approach negates these shortcomings via combining learning and reasoning (Hooshyar et al., 2024).
It is divided into three primary steps.
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1. First, neural learning employs convolutional neural networks (CNNs) to analyze visual scenes
(Zhang & Sheng, 2024).

2. Second, semantic parsing uses recurrent neural networks (RNNs) to produce a symbolic program
(Venugopal et al., 2021).

3. Third, symbolic reasoning runs the program on a structured representation of the scene (Garcez et
al., 2009).

Advantages of NSC

The neural-symbolic method decreases the supervision needed (Hooshyar et al., 2023), enables
interpretable and transferable solutions (Hooshyar et al., 2021), and allows for improved generalization
across tasks and domains (Yu et al., 2023).

DISCUSSION

Machine learning plays a critical role in educational technology by enabling both cognitive and
noncognitive student modeling. However, two major challenges persist in its application. First, there is
the issue of limited training data. Models trained on large, generic datasets often fail to align with
specific educational limitations, e.g., following proven learning principles or teaching guidelines
(Agrawal & Pandey, 2024). Second, most machine learning algorithms are not understandable.
Their black box nature can break the trust of educators, practitioners, and
learners and make it hard for stakeholders to comprehend or verify the system's decisions (Colelough &
Regli, 2025).

To address these issues, Neural-Symbolic Computing (NSC) has emerged as a potential answer.
NSC mixes symbolic reasoning and neural learning, taking advantage of the strengths of
both approaches. This hybrid solves uncertainty and shatters restrictions such as forgetting
or bad extrapolation (Hitzler & Sarker, 2022). NSC enables previous knowledge to
be incorporated, leading to improved learning and reasoning even with sparse data (Belle, 2024). Also,
the explainability of these systems is significantly enhanced. Symbolic knowledge stored in the network
can be leveraged and overlaid with comprehensible rules that are rendered explicit for
teachers and students to have clear comprehension of the decision-making procedure. This renders them
more reliable and deployable (Votsis, 2024).

Besides these general strengths, NSC is especially strong for purposes involving heterogeneous types
of data. It is optimally suited to undertake operations such as assigning metadata to video or audio
content and multimodal fusion for information retrieval (Thomas & Saad, 2022). Academically,
NSC has enormous potential in many fields. In image and video processing, for instance,
NSC supports emotional understanding as well as interpretable video action reasoning. This allows for
the ability of AI to read visual content along with understanding
human behavior and emotions, making educational content analysis value-added (Alabi & Morales,
2024). NSC in natural language processing assists in procedural text comprehension and relation
extraction. The incorporation of symbolic reasoning guarantees more contextual understanding
and adherence to educational goals (Keber et al., 2024).

Sequential tasking performance is also enhanced by NSC. It enhances knowledge tracing with deep
learning structures such as Recurrent Neural Networks (RNNs), allowing the system
to incorporate educational guidelines and follow learner development over time. This leads to more
adaptive and perceptive learning systems (Wan et al., 2024). Overall, the argument posits a
compelling future for artificial intelligence in calling for the incorporation of cognitive
psychology within AI design. As such integration would allow AI not just to reason intellectually but
also to have meaningful emotional interactions with people and other
AI entities, this double capability—reflecting the logical "brain" and emotional “heart” of human
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cognition—holds the potential to advance AI toward more human-like communication and relational
depth (Hossain & Chen, 2025).

Nevertheless, cognitive psychology also reveals the limitations of current AI. Variations in race,
regional culture, environment, and subjective mental activity create inconsistencies that make it difficult
to design universal, interpretable AI systems that truly reflect human cognitive processes (Bhuyan etal.,
2024). In spite of all these challenges, the prospects are bright. The interdisciplinary synthesis of AI and
psychology unlocks promising directions in big data healthcare, human-computer interaction, brain-
computer interfaces, and general artificial intelligence. By embracing cognitive science and multimodal,
high-dimensional data, these disciplines can mature in
complementary directions, strengthening and complementing each other's strengths (Hamilton et al.,
2024).

This investigation sets out a forward-thinking research trajectory.
It places a premium on creating emotionally intelligent machines and richer human-computer interaction.
The theoretical foundation and general applications potential emphasized here position NSC as
a pioneering approach in AI research. By presenting this framework,
the available literature offers significant direction for future scholars in attempting to develop the next
generation of intelligent systems (Hitzler et al., 2022).

CONCLUSION

The conclusion appears to close the importance of conducting more research on the construction
of interpretable AI models. More specifically, based on research results drawn from other areas of
Neural Symbolic Computing (NSC), this constructed framework appears to be in the right
direction in enhancing AI interpretability, especially in education. The future
research, the execution of an
NSCdriven approach oneducational datasets, appears like a feasible way to measure its impact and effic
acy in learning.
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