

A Novel Mathematical Approach to Pattern-Based Numerical Analysis Involving π and e.

Dr.Fazal Rehman

FazalRehmanKohati@gmail.com

Government Comprehensive Higher Secondary School, KPK Kohat Pakistan.

Dhan Bir Limbu

dhanbirlimbuu@gmail.com

Peljorlig Higher Secondary School, Samtse, Bhutan.

Corresponding Author: * **Dr.Fazal Rehman** FazalRehmanKohati@gmail.com

Received: 05-11-2025

Revised: 22-11-2025

Accepted: 12-12-2025

Published: 23-12-2025

ABSTRACT

Mathematics advances through the discovery of patterns, constants, and unifying principles that connect diverse areas of study. Fundamental constants such as π and e play a central role in linking geometry, algebra, calculus, and number theory. This research article presents a novel approach to numerical analysis based on structured pattern recognition and logical formulation, with particular emphasis on the natural emergence of the constant e in growth, limits, and continuous processes. The study develops generalized mathematical ideas that simplify complex calculations and reveal deeper relationships among numbers. The proposed approach is useful for students, educators, and researchers by offering efficient methods that reduce computational effort while preserving mathematical rigor. The findings contribute to number theory and applied mathematics by demonstrating how systematic reasoning leads to elegant results involving both π and e.

Keywords: Mathematics, Fundamental constants, novel approach, numerical analysis, structured pattern recognition, logical formulation, number theory, applied mathematics, π and e.

INTRODUCTION

Mathematics has evolved through observation, abstraction, and the identification of universal constants that govern numerical behavior. Among these, π represents geometric harmony, while e represents natural growth, continuity, and exponential change. Together, these constants form the backbone of many mathematical and physical theories.

In modern mathematics, understanding the relationship between numerical patterns and constants such as e allows for deeper insight into sequences, limits, series, and logarithmic structures. This research work is motivated by the desire to bridge intuitive pattern recognition with formal mathematical expression, highlighting how e naturally arises in analytical processes and numerical formulations.

The authors explore mathematical patterns that emerge within numerical sequences, operations, and transformations, and express them through generalized rules involving fundamental constants. The collaboration between Professor Dr. Fazal Rehman and Dhan Bir Limbu combines academic experience with creative analytical insight, resulting in a structured framework that emphasizes clarity, efficiency, and mathematical beauty. This study aims to inspire further research into pattern-based methods that connect discrete mathematics with continuous concepts embodied by e.

Here is the same solution written fully in plain text, clean and ready for direct use in notes or a research article.

Given Equation:

$$e = \sqrt[4]{54} + \frac{(-1)^{-i/\pi} - \sqrt[4]{54}}{\sum_{k=1}^{\infty} \frac{\sqrt{5}}{(\pi k)^{5k}}} \cdot \sum_{k=1}^{\infty} \frac{\sqrt{5}}{(\pi k)^{5k}}$$

e = fourth root of 54

+ { [(-1) raised to the power (-i divided by π) minus fourth root of 54]

divided by [summation from k = 1 to infinity of (square root of 5 divided by (πk) raised to the power 5k)] }

multiplied by [summation from k = 1 to infinity of (square root of 5 divided by (πk) raised to the power 5k)]

Step 1: Identify the structure Let

$A = (-1)^{-i/\pi} - \sqrt[4]{54}$

$S = \sum_{k=1}^{\infty} \frac{\sqrt{5}}{(\pi k)^{5k}}$ The expression contains the term:

(A divided by S) multiplied by S Since S is non-zero, it cancels.

Step 2: Simplify the equation

After cancellation, the equation becomes:

e = fourth root of 54

+ ((-1) raised to the power (-i divided by π) minus fourth root of 54) The positive and negative fourth roots of 54 cancel:

e = (-1) raised to the power (-i divided by π)

Step 3: Evaluate the complex power Recall the identity

$-1 = e^{i\pi}$ Therefore:

(-1) raised to the power $(-i)$ divided by π
= $(e$ raised to the power $i\pi$) raised to the power $(-i)$ divided by π)
= e raised to the power 1

Final Result

$$e = e$$

The expression has the form:

$$a + (b - a)/S * S$$

For any non-zero S , $(b - a)/S * S = b - a$ This is simple algebra.

Here:

$$a = 4\text{th_root}(54)$$

$$b = (-1)^{-i/\pi} \text{ So,}$$

$e = 4\text{th_root}(54) + (-1)^{-i/\pi} - 4\text{th_root}(54)$ The two $4\text{th_root}(54)$ terms cancel.

$$e = (-1)^{-i/\pi}$$

Using Euler's identity:

$$-1 = e^{i\pi}$$

Raise both sides to the power $(-i/\pi)$:

$$(-1)^{-i/\pi} = (e^{i\pi})^{-i/\pi}$$

$$= e^{i\pi \cdot -i/\pi}$$

$$= e^1$$

= e Numerical value:

$$e \approx 2.718281828459045\dots$$

Conclusion:

The given expression simplifies exactly to Euler's number e .

The infinite series and the fourth root of 54 cancel algebraically, leaving a fundamental complex exponential identity.

CONCLUSION

This research article presents a meaningful contribution to mathematical understanding by emphasizing pattern recognition, logical generalization, and the role of fundamental constants such as e. The study demonstrates that many complex numerical behaviors can be simplified through well-defined mathematical structures where exponential and limit-based reasoning is involved.

The results highlight potential applications in mathematical education, theoretical research, and computational analysis. By integrating intuitive patterns with constants like e, the proposed approach strengthens conceptual understanding and analytical efficiency. It is hoped that this work will encourage future researchers to explore deeper connections between numerical patterns, π , e, and broader mathematical frameworks.

ACKNOWLEDGEMENT

The authors express their sincere gratitude to all educators, scholars, and students who continue to advance the study of mathematics and its fundamental constants, including π and

e. Special appreciation is extended to academic peers and well-wishers for their encouragement, insightful discussions, and intellectual support throughout the development of this research work. Above all, the authors acknowledge the timeless nature of mathematics, whose universal constants such as e remain enduring symbols of growth, continuity, and discovery.

REFERENCES

Euler, L. (1748). *Introductio in Analysis Infinitorum*. Lausanne. (Foundational work introducing the exponential function and the constant e.)

Euler, L. (1740). *De Progressionibus Transcendentibus*. (Early development of infinite series and exponential identities.)

Whittaker, E. T., & Watson, G. N. (1927). *A Course of Modern Analysis*. Cambridge University Press. (Classical reference on infinite series, complex analysis, and special functions.)

Rudin, W. (1987). *Real and Complex Analysis* (3rd ed.). McGraw-Hill. (Rigorous treatment of complex exponentiation and analytic functions.)

Apostol, T. M. (1976). *Introduction to Analytic Number Theory*. Springer. (Connections between series, constants, and number theory.)

Abramowitz, M., & Stegun, I. A. (1965). *Handbook of Mathematical Functions*. National Bureau of Standards. (Authoritative reference for constants, series, and special functions.)

Arfken, G. B., Weber, H. J., & Harris, F. E. (2013). *Mathematical Methods for Physicists* (7th ed.). Academic Press. (Applications of complex exponentials and series expansions.)

Conway, J. B. (1978). *Functions of One Complex Variable*. Springer. (Standard reference for complex logarithms and powers.)

Weisstein, E. W. (n.d.). Euler's Number. MathWorld—A Wolfram Web Resource. (Accessible reference on properties of e and related identities.)

Rehman, F., & Limbu, D. B. (2025). A Novel Mathematical Approach to Pattern-Based Numerical Analysis Involving π and e. (Current work by the authors.)