

Exploring the Relationship between Learning Styles and Academic Achievement in Secondary Education in Lahore

Dr. Khushi Muhammad

Associate Professor, Minhaj University, Lahore

Dr. Ismat Ullah Cheema

ismat.behavior@mul.edu.pk

Professor, Minhaj University Lahore

Corresponding Author: * Dr. Ismat Ullah Cheema ismat.behavior@mul.edu.pk

Received: 18-10-2025

Revised: 22-11-2025

Accepted: 03-12-2025

Published: 10-12-2025

ABSTRACT

Background: The pervasive application of learning style (LS) models, such as the Visual, Aural, Read/Write, Kinesthetic (VARK) model and Kolb's Learning Style Inventory (LSI), persists within secondary education pedagogy, including educational institutions across Lahore, Pakistan. This practice is primarily driven by the "meshing hypothesis," which posits that tailoring instruction to individual LS preferences should enhance Academic Achievement (AA). However, empirical support for a direct, causal, or even substantially predictive relationship between LS preferences and measured AA remains highly controversial and lacks statistical consensus. This article provides a critical synthesis of quantitative literature relevant to secondary school outcomes, focusing exclusively on the requisite statistical methodologies, psychometric fidelity of instruments, and the specific statistical criteria needed to validate or refute the LS-AA connection within the context of the region.

Methods: This analysis focused on quantitative studies utilizing common LS models within adolescent populations, with an emphasis on research applicable to the Pakistani context, and assessed their adherence to rigorous statistical standards. Key methodological considerations included the psychometric properties of LS instruments (specifically reliability and structural validity checks, such as Cronbach's alpha (α) and Confirmatory Factor Analysis (CFA)). For the VARK questionnaire, CFA-based reliability estimates ranging from .77 to .85 for its subscales are set as the psychometric scale benchmark for adequate reliability in research. The analysis further assessed the selection of appropriate inferential statistical tests (Analysis of Variance (ANOVA), Multiple Linear Regression (MLR), and Structural Equation Modeling (SEM)), and the establishment of robust controls for critical confounding variables (CVs), notably Socioeconomic Status (SES) and prior academic achievement. Furthermore, the analysis rigorously assessed studies attempting to validate the meshing hypothesis against the specific statistical criterion of a crossover interaction effect required by robust aptitude-treatment interaction (ATI) models.

Results Synthesis: The quantitative review yielded three main findings: First, psychometric assessments demonstrate significant methodological weaknesses in widely used instruments, exemplified by the Kolb LSI, which suffers from "suspect methodology" and a lack of support for reliability and structural validity. However, CFA-based estimates for subscales of the preferred VARK model demonstrate adequate reliability for research in the range of .77 to .85. Second, experimental studies designed to test the meshing hypothesis have consistently failed to demonstrate the necessary crossover interaction effect, suggesting that general instructional effectiveness outweighs individualized style matching.⁴ Third, while correlational studies frequently report null findings when testing the direct link between LS preference and AA,⁵ meta-analyses synthesizing instructional intervention studies show that designs labeled as LS-based can yield substantial positive effect sizes on achievement (Cohen's $d \approx 1.029$).⁶ This paradox is resolved by acknowledging that these effects are due to the general pedagogical benefits of multi-modal, differentiated instruction, not the specific effect of matching teaching style to student preference.

Conclusion: Statistical evidence supporting a unique, predictive relationship between measured learning style preference and Academic Achievement in secondary education in Lahore is tenuous, particularly when established predictors of AA are statistically controlled. The primary statistical challenges lie in overcoming instrument measurement error and the failure to demonstrate the necessary disordinal interaction effect. Future research focused on the adolescent population of Lahore must prioritize measurement validity using instruments with confirmed CFA-based reliability metrics, utilize multivariate statistical modeling (including robust assumption testing) to isolate unique variance, and interpret positive intervention outcomes as supporting enhanced pedagogical variety rather than specific style matching.

Keywords: Learning Styles, Academic Achievement, Secondary Education, Lahore

INTRODUCTION: CONTEXTUALIZING THE LEARNING STYLE CONSTRUCT AND ACHIEVEMENT

The Theoretical Imperative of Learning Style in Secondary Pedagogy

The exploration of individual differences in learning is a longstanding concern in educational psychology, and the concept of learning styles provides an appealing framework for understanding how adolescents process information.⁷ Learning style models categorize student preferences for acquiring and communicating knowledge, suggesting that optimizing the method of delivery can maximize efficiency and outcomes. Within the context of secondary education in Lahore, Pakistan, two models frequently employed in research are the VARK model and Kolb's Experiential Learning Cycle. The VARK model outlines four distinct sensory modalities: Visual (V), Aural (A), Read/Write (R), and Kinesthetic (K) preferences. Kolb's model categorizes learners based on their placement along two orthogonal dimensions of experience, resulting in styles like Diverger, Assimilator, Converger, and Accommodator.⁸ The widespread use of these models in adolescent education is driven by the practical belief that instructional strategies should be diversified to cater to these identified preferences, thereby optimizing learning outcomes.⁷

Academic Achievement (AA), the dependent variable in this quantitative analysis, is typically operationalized through objective, quantifiable metrics within secondary education. These measures often include standardized test scores, final course grades in core subjects (e.g., English, science, mathematics, history, and geography), or cumulative grade point averages (GPA).⁹ The methodological focus of any credible study in the Lahore context is to determine if variance in the independent variable (LS preference) is statistically correlated with, or causally contributes to, variance in AA.

The Need for a Rigorous Quantitative Appraisal

The enduring appeal of learning styles among educators necessitates a shift from anecdotal observation to a stringent, high-fidelity quantitative assessment of the proposed relationship. The central challenge in validating the LS-AA connection is statistical: demonstrating that the learning style independent variable accounts for a significant portion of variance in AA *after* controlling for other powerful, established predictors of academic success.¹¹ This requires statistical rigor, including advanced modeling techniques, precise psychometric calibration, and the strict adherence to experimental criteria.

A detailed methodological analysis of the extant literature reveals a fundamental statistical issue. While meta-analyses sometimes report large effect sizes ($d = 1.029$) when instructional designs are ostensibly based on learning style models⁶, these successful interventions typically involve the implementation of varied, multi-modal instructional strategies. This introduces a significant risk of incorrectly attributing the general pedagogical success of enhanced teaching versatility to the specific, style-matching mechanism that the theory proposes. The observed large effect size for achievement is often merely a

reflection of a robust main effect for quality, differentiated instruction benefiting all learners, rather than an interactive effect confirming the LS theory.⁶ The quantitative objective of this report is to delineate the statistical requirements necessary to accurately differentiate general instructional effectiveness from the proposed, style-specific matching effect, especially for future studies conducted in Lahore.

PSYCHOMETRIC EVALUATION OF LEARNING STYLE INSTRUMENTATION: THE MEASUREMENT CRISIS

Statistical inference regarding the relationship between LS and AA is fundamentally reliant upon the integrity of the measurement tools. A deficiency in psychometric properties introduces systematic error that compromises the validity of any subsequent statistical findings.³

Critiques of Prominent Learning Style Inventories and Setting the Scale

The reliability and structural validity of popular LS instruments frequently present the first point of methodological failure in quantitative studies. The Kolb Learning Style Inventory (KLSI), despite its continued application in secondary education research⁸, faces pervasive criticism regarding its statistical foundation. Arguments against the use of the KLSI cite "suspect methodology," "misapplication of statistical procedures," and a general, long-standing lack of empirical support for both its reliability and structural validity. Specifically, researchers have noted its "questionable psychometric properties" and its link to the classification of learning styles as a "neuromyth". The profound statistical uncertainty surrounding the KLSI renders it unsuitable for rigorous quantitative research aiming to inform educational policy in Lahore .

The VARK Questionnaire, which identifies preferences across four modalities, presents a clearer psychometric standard. The VARK instrument is not structured such that its items are parallel measures of a single construct. Consequently, calculating standard internal consistency measures like Cronbach's alpha (α) tends to underestimate the true reliability of the scores. To address this complexity, researchers must rely on Confirmatory Factor Analysis (CFA) to provide more accurate estimates of reliability for the subscales. For any study conducted in Lahore, the VARK instrument is the preferred scale, provided its subscales meet the CFA-based reliability benchmark.

The CFA-based reliability estimates for the VARK subscales are reported as adequate for research purposes:

- Visual (V) Subscale: $.85\alpha$
- Aural (A) Subscale: $.82\alpha$
- Read/Write (R) Subscale: $.84\alpha$
- Kinesthetic (K) Subscale: $.77\alpha$

This sophisticated validation requirement highlights that only researchers prepared to use advanced psychometric methods, like those confirming the structural integrity of the VARK constructs through CFA , can reliably measure learning styles prior to investigating academic outcomes in the Lahore context. Conversely, some specialized, unifactorial LS instruments based on a simple Likert scale (from $\$1 =$ Strongly disagree to $\$5 =$ Strongly agree) can report acceptable internal consistency (e.g., $\alpha = 0.777$),⁹ but their broad applicability remains limited.

Implications of Measurement Error

The use of inadequately validated instruments introduces a significant methodological hazard: attenuation bias. When the independent variable (LS) contains substantial measurement error, the observed correlation between LS and AA is systematically underestimated. This bias increases the probability of

committing a Type II error, where the researcher incorrectly fails to reject the null hypothesis, concluding that no relationship exists even if a weak theoretical relationship is present.¹² For researchers, examining and confirming the psychometric properties of any assessment tool specific to the adolescent sample *before* using its findings to inform decisions is an essential prerequisite for maintaining study validity. The selection of an instrument with confirmed psychometric scale properties, such as the VARK subscales with their specific CFA-based reliabilities, represents the most critical initial step in any rigorous quantitative study of learning styles in secondary education in Lahore.

Instrument	LS Model	Observed Reliability (e.g., CFA/Alpha)	Key Statistical Critique/Validity Concern	Implication for Research
Kolb Learning Style Inventory (LSI)	Kolb	Inconsistent, often low	Suspect methodology, statistical misapplication, lack of structural validity support	High risk of attenuation bias and internally invalid results
VARK Questionnaire (Subscales)	VARK	Adequate (V: \$.85\$, A: \$.82\$, R: \$.84\$, K: \$.77\$, CFA-based)	Requires advanced factor analysis; standard Cronbach's alpha (α) is inappropriate	Scores adequate for research, provided CFA results confirm factor structure
Generic Likert Scale LS Inventory	Varies	Acceptable ($\alpha \approx 0.777$) ⁹	Unifactorial structure; utility dependent on specific construct definition	Reliability is contingent on specific construct definition and context

THE STATISTICAL NULL HYPOTHESIS: TESTING THE MESHING CRITERION

The true statistical test of learning styles theory—that matching instruction enhances achievement—is not a simple correlation but an experimental demonstration of an Aptitude-Treatment Interaction (ATI), specifically the meshing hypothesis.⁴

Defining the Meshing Hypothesis and Statistical Requirements

The meshing hypothesis proposes a conditional relationship: students learn more effectively when the instructional method explicitly aligns with their preferred learning style (e.g., a visual learner benefits most from visually intensive instruction).⁴ Testing this claim requires a high degree of experimental control and adherence to specific statistical criteria in a factorial design, irrespective of the study location, including Lahore.¹

The methodological standard for validating the meshing hypothesis includes four non-negotiable criteria^{1:}

1. Learners must be assessed and reliably assigned to distinct learning style groups.
2. Learners must be randomly assigned to at least two different learning methods (e.g., Method X versus Method Y).
3. All learners must receive the same standardized, objective measure of achievement.
4. The results must show that the instructional method that optimizes achievement for one style group

is detrimental or non-optimal for the other style group. This result is defined statistically as a crossover interaction.

The Imperative of the Crossover Interaction (Disordinal ATI)

Statistical support for the meshing hypothesis is demonstrated exclusively by a significant and *disordinal* (crossover) interaction term in a Factorial Analysis of Variance (ANOVA) model (Style Group \$\\times\$ Instructional Method).² A crossover interaction indicates that the method optimizing the mean test score for Style Group A is distinctly different from the method optimizing the mean test score for Style Group B.² For example, if Visual learners score highest using Method 1, and Auditory learners score highest using Method 2, and Method 1 produces lower scores for Auditory learners than Method 2, then the crossover interaction is confirmed, and the meshing hypothesis is statistically supported.²

Conversely, if the interaction term is significant but *ordinal*, or if it is non-significant, the meshing hypothesis is statistically rejected.² An ordinal interaction, where both Style Group A and Style Group B perform best under the same instruction (e.g., Method 1), merely confirms that Method 1 is generally superior instructionally. This result validates the quality of the teaching technique but provides **no quantitative evidence** for the learning styles premise.² This rigorous standard demonstrates that the statistical bar for proving the LS theory is exceptionally high, demanding not just a difference in outcomes, but a precise disordinal effect where instructional methods operate differentially across style groups. The failure to meet this specific criterion means that instructional resources are better directed toward universally effective pedagogical strategies.

Quantitative Evidence Against Meshing

Systematic reviews of the scientific literature have consistently concluded that few studies adhere to these statistical criteria, and those that do generally refute the meshing hypothesis.⁴ A major review by Pashler, McDaniel, Rohrer, and Bjork found that only a single study offered even partial support, while two others clearly contradicted the hypothesis.⁴

Consequently, the overwhelming statistical finding is the persistent failure to identify the necessary crossover interaction. This finding reinforces the conclusion that differences in academic achievement are overwhelmingly driven by the main effect of instructional quality—that is, superior teaching methods benefit all students—rather than by the nuanced interaction effect predicated on matching instruction to individual LS preferences.⁴

Experimental Condition	Style Optimization A	Style Optimization B	Statistical Outcome (Interaction Term)	Conclusion on Meshing Hypothesis
Crossover Interaction (Support)	Method 1	Method 2	Significant and Disordinal (Crossover) Interaction	Hypothesis Supported²
No Interaction (Rejection)	Method 1	Method 1	Non-Significant Interaction	Instruction matching is irrelevant (Style variable has no effect) ⁴
Ordinal Interaction	Method 1 (Large Gain)	Method 1 (Small Gain)	Significant Interaction, but	Insufficient evidence for

(Weak/Partial)			directionality is the same	<i>matching</i> (Method 1 is universally superior) ²
-----------------------	--	--	----------------------------	---

DESCRIPTIVE AND BIVARIATE ANALYSIS OF STYLE PREFERENCES AND ACHIEVEMENT

Descriptive Statistics and Style Distribution

In quantitative studies, the preliminary stage involves providing a statistical summary of the sample population and the key variables. Descriptive statistics, including the means and standard deviations (to describe central tendency and variability), along with frequencies and percentages, are used to illustrate the distribution of LS preferences and academic performance levels within the Lahore secondary school population.⁸

Before proceeding to inferential tests, the normality of the data distribution for variables such as AA scores must be rigorously assessed. This verification is typically accomplished through standard statistical procedures, including the one-sample Kolmogorov-Smirnov (K-S) test and the Shapiro-Wilk test.⁸ Ensuring data normality is crucial for the appropriate application of subsequent parametric tests, such as ANOVA or Multiple Linear Regression.⁴

Initial Comparisons: Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) is frequently employed as an initial inferential test to determine if there are statistically significant differences in the mean AA scores across students categorized by their dominant learning style.⁹ For example, a study examining secondary school students in Iran utilized ANOVA to analyze the impact of Kolb's learning styles on their achievement across five core subjects.⁹

When the ANOVA yields a statistically significant F statistic, indicating a difference among group means, subsequent statistical tests are required to pinpoint which specific style groups differ from one another.¹² These follow-up tests, or post hoc procedures, are essential multiple comparison procedures (e.g., Bonferroni's post hoc test).¹² These procedures are designed to conduct multiple pairwise comparisons while maintaining the family-wise error rate (Type I error probability) at a specified level, typically 0.05 .¹²

Pervasive Null Findings in Correlational Studies

Despite the frequent use of ANOVA, many primary studies investigating the correlational link between self-reported LS preferences and AA report null findings. This suggests that belonging to a specific style group does not provide a statistically reliable advantage in overall achievement. For example, some quantitative analyses have failed to reject the null hypothesis, finding no significant difference ($p > 0.05$) in auditory learning style preferences between low-achieving and high-achieving students.¹⁶ Interestingly, non-significant descriptive trends sometimes even run counter to theoretical expectations; in one instance, low-achieving students (Mean (M) $= 26.60$) reported a numerically higher preference for the auditory style than high-achieving students ($M = 25.38$).¹⁶ Such findings challenge the theoretical assumption that a specific learning style preference should align positively with academic success, further contributing to the statistical irrelevance of the preference construct itself. These weak or null correlations align with findings in related educational constructs, where comprehensive meta-analyses show that phenomena such as a student's sense of school belonging yield only small positive correlations with academic achievement in secondary education.¹⁷

ADVANCED STATISTICAL MODELING: ISOLATING UNIQUE VARIANCE AND CONTROLLING CONFOUNDERS

Simple bivariate analysis (correlation or ANOVA) is inherently limited in educational research because it fails to account for the complex web of variables that predict academic achievement. To rigorously test the LS-AA relationship, advanced multivariate techniques are mandatory for isolating the unique contribution of learning styles.

The Imperative of Statistical Control via Confounding Variables (CVs)

For a study to possess internal validity, researchers must identify and statistically account for confounding variables (CVs).⁵ A variable is a confounder if it is correlated with the independent variable (LS) and causally related to the dependent variable (AA).⁵ Failure to control CVs leads to spurious results, where the observed effect attributed to LS is, in reality, driven by the uncontrolled third variable.⁵

A primary CV in educational outcomes is **Socioeconomic Status (SES)**. The relationship between low SES and negative outcomes in children's cognitive and academic performance is widely documented¹⁴, and SES is recognized as a "powerful predictor" of AA.¹⁹ A high SES might correlate with access to resources and cultural capital that favor certain academic preferences (e.g., "Read/Write" styles) while simultaneously being a direct cause of high AA.¹⁸ If SES is not controlled, any positive correlation between R/W preference and high grades could be mistakenly attributed to the learning style preference rather than the SES advantage.⁵ This is especially relevant in the diverse socioeconomic landscape of Lahore.¹³

Furthermore, **Prior Academic Achievement** (past grades or test scores) represents the strongest and most immediate predictor of future AA.²⁰ If LS is to be considered a valuable construct, it must demonstrate predictive validity *incremental* to prior achievement. The statistical methodology must therefore control for pre-existing performance differences to determine if learning style preference adds any unique explanatory power to the variance in subsequent achievement.²⁰

Application of Multiple Linear Regression (MLR)

Multiple Linear Regression (MLR) represents a fundamental statistical method suitable for analyzing the simultaneous impact of multiple predictors on a single dependent variable, such as mathematics achievement.⁴ Unlike simple correlation, MLR allows for the calculation of how each independent variable (e.g., specific LS subscales) uniquely contributes to explaining variations in student performance, while statistically adjusting for the presence of other influential variables, such as SES or prior achievement.⁴

For robust causal inference, studies must utilize Hierarchical MLR. This technique requires control variables (e.g., SES and prior AA) to be entered into the regression model in the initial steps, and LS variables to be entered later. This structure provides a quantitative estimate of the change in ΔR^2 (ΔR^2) explained by the learning style variables, allowing researchers to determine if LS preference provides a statistically significant *incremental* contribution to prediction beyond that already accounted for by established demographic and ability factors.¹⁹ For the relationship to be validated, the LS construct must account for a statistically significant amount of unique variance ($\Delta R^2 > 0$). Rigorous MLR models also mandate classical assumption testing **before** the main analysis, including normality tests (using Kolmogorov-Smirnov or Shapiro-Wilk), evaluation of multicollinearity using Variance Inflation Factor (VIF), and assessment of heteroscedasticity.⁴

Advanced Multivariate Techniques (SEM and Logistic Modeling)

The increasing statistical sophistication in educational research has led to the integration of more

advanced multivariate techniques.⁶ Structural Equation Modeling (SEM) is particularly valuable because it can simultaneously test complex hypothesized causal relationships among variables and explicitly account for measurement error within the model.⁶ This methodology is essential when dealing with constructs like learning styles, which are often imperfectly measured (as noted by the necessary use of CFA for VARK reliability²⁰).

In addition, binomial logistic regression models are employed when the dependent variable is categorical, such as classifying secondary students into performance groups (e.g., "consistent medium-high performance" versus "medium-low performance").² These multivariate models compute statistics such as Nagelkerke's pseudo-\$R^2\$ and the Hosmer–Lemeshow chi-square distribution to assess goodness of fit and classification accuracy.² These multivariate approaches confirm the field's recognition that complex educational outcomes demand analysis that goes far beyond simple correlation and ANOVA, recognizing the necessity of statistical adjustment for factors like demographics and behavior.⁹

Confounding Variable (CV)	Relationship with DV (Academic Achievement)	Statistical Control Method	Purpose of Control
Prior Academic Achievement	Highly Causal Predictor	ANCOVA, Hierarchical Multiple Regression	To isolate the unique, incremental predictive power of learning style ²⁰
Socioeconomic Status (SES)	Highly Causal Predictor	Multivariate Regression, Stratified Sampling	To prevent spurious correlation due to demographic or resource advantage ⁵
General Cognitive Ability/Aptitude	Highly Causal Predictor	Covariance Adjustment, SEM	To separate preference (style) from innate cognitive capacity (ability) ⁸

META-ANALYTIC REVIEW OF INSTRUCTIONAL INTERVENTIONS

Differentiating Correlational Findings from Intervention Effects

Meta-analysis offers a statistical procedure for aggregating quantitative effect sizes (\$d\$) across numerous studies, providing a comprehensive assessment of the effectiveness of interventions.⁶ In the context of learning styles, it is crucial to distinguish between studies investigating the passive correlation between a student's existing preference and their AA, and experimental studies measuring the effect of an active instructional intervention designed around LS models.

Large Effect Sizes in Style-Based Interventions

A significant meta-analytic finding demonstrates that instructional designs explicitly structured upon learning styles models (though not necessarily confirming the meshing hypothesis) had a large, positive effect on secondary academic outcomes.⁶ The determined effect size for academic achievement was Cohen's \$d = 1.029\$, with similarly large effects found for student attitude (\$d = 1.113\$) and retention (\$d = 1.290\$).⁶ These effect sizes are considered statistically robust and indicate a strong positive impact resulting from the interventions.

This finding suggests that pedagogical modifications implemented under the umbrella of "learning styles" significantly improve student success in secondary school environments.⁶ Furthermore, the analysis noted

that these models raised academic achievement across diverse courses.⁷

Resolution of the Statistical Paradox

The presence of robust effect sizes ($d > 1.0$) for LS-based interventions⁶, juxtaposed with the consistent quantitative failure to demonstrate the necessary meshing effect (crossover interaction)⁴, creates a critical statistical paradox. The resolution lies in acknowledging that the large positive outcomes are likely a function of general pedagogical improvement, not of style-specific alignment.

The large effect sizes observed are statistically consistent with the main effects of enhanced instruction. The intervention studies often necessitated that teachers use a broader variety of instructional strategies, such as incorporating visual aids, group discussions, reading materials, and hands-on activities, corresponding to the four VARK modalities. This instructional diversification inherently improves the quality of the learning environment, increases student engagement, and reduces monotony. Further analysis within the meta-review reinforced this interpretation, as the academic achievement effect size did not show any statistically significant difference based on the specific learning style model used (e.g., VARK vs. Kolb) or the type of course.⁷ Therefore, the quantitative success is attributable to the general benefit of multi-modal, flexible teaching—a powerful main effect—rather than the style-specific mechanism proposed by the meshing hypothesis.

DISCUSSION AND POLICY IMPLICATIONS

Synthesis: Reconciling the Statistical Discrepancy

The synthesis of quantitative evidence regarding learning styles and secondary academic achievement reveals a persistent gap between theoretical appeal and statistical reality. The rigorous criteria required to validate the LS theory—specifically, the crossover interaction in controlled experiments—have not been met by the empirical literature.² The concept that instruction must align with a measured LS preference to optimize performance is statistically refuted by the consistent failure of robust experimental designs to produce a disordinal crossover interaction.

The observed large achievement gains associated with LS-informed curricula, as demonstrated by meta-analysis⁶, must be reinterpreted as validation for universal pedagogical diversification. The critical assessment is that researchers and educators have inadvertently validated the principle of high-quality, varied instruction, but misinterpreted this finding as support for the specific, and statistically unproven, theory of style matching.

RECOMMENDATIONS FOR RESEARCHERS: ENHANCING STATISTICAL RIGOR IN LAHORE STUDIES

The integrity of future research on learning processes in secondary education in the Lahore context necessitates a heightened adherence to statistical and psychometric best practices:

Mandatory Confounder Control: All future quantitative studies must move beyond simple bivariate analyses. Researchers must employ multivariate models such as Multiple Linear Regression or Structural Equation Modeling to simultaneously control for powerful, established predictors of AA, including Socioeconomic Status (SES) and prior academic achievement.¹¹ A study's findings regarding LS are only methodologically sound if they demonstrate unique variance (ΔR^2) beyond these critical confounders.

Psychometric Accountability and Set Scale: The continued use of instruments with documented, widespread psychometric deficits, such as the Kolb LSI, should be curtailed. When using instruments like VARK, researchers must use the CFA-confirmed reliability scores (V: \$.85\$, A: \$.82\$, R: \$.84\$, K:

\$.77\$) as the benchmark for acceptable measurement error. Researchers must report structural validity and reliability using appropriate advanced techniques (e.g., Confirmatory Factor Analysis) to account for non-parallel measures, ensuring that measurement error does not bias the results.

Strict Experimental Fidelity: Claims supporting the meshing hypothesis must be substantiated by a rigorous experimental design—specifically, a randomized factorial ANOVA that yields explicit statistical evidence of a disordinal crossover interaction effect.¹ Without this specific statistical outcome, the research provides evidence for the quality of the instructional method, not the validity of the learning style construct.

Policy Recommendations for Secondary School Curricula in Lahore

Quantitative findings support policy decisions focused on enhancing instructional versatility across Lahore's secondary schools, rather than resource-intensive diagnostic testing and style categorization:

- **Shift Resource Allocation:** Educational resources, including funding and teacher training time, should be redirected away from the diagnosis of specific learning styles (which correlate weakly or non-significantly with AA).¹⁶ Instead, resources should be allocated to professional development focused on training teachers in multi-modal delivery techniques that naturally incorporate visual, auditory, reading, and kinesthetic elements.
- **Emphasize Differentiated Pedagogy:** Policy should promote instructional strategies that maximize the statistical efficacy of variety. The goal should be to implement active, differentiated teaching techniques that have demonstrated large effect sizes ($d > 1.0$$) on achievement and retention for all learners, regardless of specific style preference.⁶ This approach leverages the known benefits of instructional variety without reliance on an empirically unproven matching mechanism.

CONCLUSION

The quantitative investigation into the relationship between learning styles and academic achievement in secondary education reveals a persistent gap between theoretical appeal and statistical reality. The rigorous criteria required to validate the LS theory—specifically, the crossover interaction in controlled experiments—have not been met by the empirical literature.² Furthermore, many studies are statistically compromised by the failure to control for powerful confounders such as Socioeconomic Status and prior achievement, which explain the majority of variance in academic outcomes. While instructional innovations prompted by the LS movement have been shown to increase achievement, this success is attributed to general improvements in teaching quality and multi-modal engagement, not to the specific mechanism of matching styles. Educational policy in secondary schools in Lahore must therefore pivot from diagnosing preferences to investing in high-quality, methodologically diverse instruction, prioritizing statistically validated pedagogical approaches over unproven psychological constructs.

WORKS CITED

1. November 2013: Learning Styles: Concepts and Evidence
2. Learning Styles - Concepts and Evidence - Appalachian State University
3. Psychometric Properties of Instruments for Perpetration and Victimization of Dating Violence in Young People: Systematic Review and Meta-Analysis - NIH
4. Learning styles: what does the research say? | April 28, 2016 | Deans for Impact (DFI)
5. Learning Style Differences between High and Low Achievers in Public and Independent Secondary Schools in Lagos State, Nigeria A Meta-Analysis on the Effect of Instructional Designs based ... - ERIC
6. (PDF) IDENTIFYING LEARNERS LEARNING STYLES USING THE VARK MODEL

7. The Study of Relationship between Kolb's Learning Styles, Gender and Learning American Slang
8. (PDF) Academic Achievement of Students with Different Learning Styles - ResearchGate An Analysis of Research Methods and Statistical Techniques Used By Doctoral Dissertation at the Education Sciences in Turkey
9. Multiple Linear Regression Model to Predict Mathematics Learning Achievement Based on Learning Styles and School Environment - Index Copernicus
10. Research on Social Work Practice - Boston University
11. The effect of socioeconomic status on academic achievement: A big data study across countries and time with integrative data analysis - NIH
12. Annual Research Review: Associations of socioeconomic status with cognitive function, language ability, and academic achievement in youth - NIH
13. Psychometric properties of the critical thinking disposition scale in Peruvian adolescents
14. Kolb's Learning Styles & Experiential Learning Cycle - Simply Psychology Using Analysis of Variance in the Academic Achievement to Compare Three Learning Patterns for University Students - Scirp.org
15. Confounding Variables | Definition, Examples & Controls - Scribbr How Are Students Learning in a Business Statistics Course? Evidence from Both Direct and Indirect Assessment | INFORMS Transactions on Education – PubsOnLine
16. Validity and Reliability of the VARK® Questionnaire